Optimization of Eccentricity during a Two Burn Station Acquisition Sequence of a eosync ronous Or it

A project present to The Faculty of the Department of Aerospace Engineering San Jose State University

in partial fulfillment of the requirements for the degree

The Designated asters 'roject) ommittee Approves the Thesis Titled

SE2UE-)E*FA0E*S/-)3.*-*US*.B+T

%y

4ynn) hou 5

A''. *6EDF*. T3EAE. *S'A)EE-0+-EE.+-0'. *0.A SA-J*S7 STATEU-+6E.S+T/

ay !"#\$

Drt 'eri(lis 'apadopoulos	Aerospace Engineering
Dra Sean S5ei	- ASA Ames . esearch) enter
ary Johnson	- ASA Ames . esearch) enter

ABST A T

ist of Ta &

ist of 'igures (

"omenclature

- A Unpertur%ed geostationary semimajor a; is C < ! #=< ! (m)
- a * r%it semimajor a; is
- D Drift rate
- e * r%it eccentricity
- E)F Earth) entered Fi;ed
- E)+ Earth) entered +nertial
- 0 AST 0 reen 5 ich Apparent Sidereal Time
- 0 ST 0 reen 5 ich ean Sidereal Time
- i inclination
- p SemiDlatus rectum
- r 'osition vector of the satellite
- r agnitude of the position vector of the satellite
 - r Acceleration vector
- raan . ight ascension of the ascending node
-) 6elocity vector
- 6 agnitude of velocity vector
- E Argument of perigee
- v True anomaly
- ; ; component of position vector
- y y component of position vector
- 8 8 component of position vector

* +ntroduction

* r%ital maneuvers have %een studied for a long time 3 ohmann solved the pro%lem of transfers %et5een t5o coplanar circular or%its 5 ith a minimum velocity applied to the space vehicle I3 ohmann9 #@!AJ& The pro%lem of t5o impulse or%it maneuvers has %een studied over the years 5 ith minor t5ea(s in order to apply solutions to real spacecraft Je8e5s(i and

ittleman I#@?!J 5 rote a%out an analytical approach to t5 o fi;ed impulse transfers9 5 hile Jin and elton I#@@#J concluded that using t5 o impulsive maneuvers of fi;ed magnitudes is only possi%le for certain thrust directions

+n the current age of afforda%ility in the Aerospace industry9 optimi8ation pro%lems are %ecoming increasingly important& As a satellite nears completion of or%it transfer9 plans must %e made in order to place the satellite into its final or%it& 0 eostationary satellites are equipped 5 ith thrusters that allo 5 the satellite to %e commanded to maneuver the spacecraft into the desired or%it& These %urns are usually tangential to the or%it plane or orthogonal to the or%it plane& Tangential %urns are also (no 5 n as alongDtrac(%urns9 and changes the longitude of the satellite& This affects the semimajor a; is9 the longitude drift rate and the eccentricity vector& *rthogonal %urns change the orientation of the or%it plane& This includes the inclination and the ascending node& ISoop9 !"#"J&

This paper deals only 5 ith tangential %urns in line 5 ith the or%it plane +n order to KstopL at the final station location in geosynchronous or%it? the satellite needs to have a semimajor a; is of <!#=<k! (m9 a drift rate of 8ero? and an eccentricity vector very close to 8ero)

+t is usually optimal to command or%it maneuvers during the apsides of the or%it ISgu%ini9 M Teofilatto9 !""!J9 %ut 5 ith afforda%ility %eing a main driver9 for the sa(e of time9 or%it maneuvers are sometimes scheduled at nonDoptimal times. The time of the maneuver can %e varied to change the eccentricity vector direction⁹ ho 5 ever⁹ 5 ith this %eing set %y limitations of time⁹ having multiple %urns ena%les some varia%ility in the final eccentricity of the or%itk This paper 5 ill deal 5 ith t5 o %urns separated %y #! hoursk This first o%jective of this 5 or(is to identify the si8es of these t5 o %urns for a specific or%it that 5 ill give the result of a final eccentricity as close as possi%le to the target eccentricity. The second o%jective is to find any general conclusions %et5 een the %urn si8es and eccentricity that can %e used on general or%itsk

, %et odology

The investigation 5 as done %y varying the ratio of the t5 o %urns and propagating through an ephemeris at a specified %urn time9 using atla% as the computing tool & The or%it 5 as modeled using the t5 o %ody model equations 5 ith no pertur%ations & The input sheet includes the ephemeris in classical or%it parameters9 5 hich are then rotated into Earth) entered +nertial IE)+J coordinates for propagation using the equations #D< I 1 ert8 M 4arson9 #@@@Jk

Equation 1 $p=a (1-e^2)$

Equation 2

 $r = \frac{p}{(1+e \cos)}$

Equation 4

$$+i$$

$$+i$$

$$+i$$

$$(ii + e \cos)$$

$$\cos i$$

$$i$$

$$+i$$

$$+i$$

$$(ii + e \cos)$$

$$\cos i$$

$$i$$

$$(ii + e \cos)$$

$$\cos i$$

$$i$$

$$(ii + e \sin)$$

$$-\cos raan \cos i$$

$$\sin raan i$$

$$(ii + e \sin)$$

$$+\sin raan \cos i$$

$$\sin i$$

$$\sin i$$

$$\cos raan i$$

$$\frac{i}{2}$$

$$-\frac{\mu}{p}$$

$$i$$

$$V = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = i$$

The vector can %e propagated for 5 ard in time %y multiplying a time step 5 ith the velocity and acceleration found from equation A I6allado9 !"">Jk

Equation 5

$$\dot{r} + \frac{\mu}{a^3}r = 0$$

The initial drift rate of the or%it9 or ho 5 quic(ly the or%it is rotating 5 ith respect to the rotation of the earth9 is given %y equation = ISoop9 !"#"J& To find the thrust needed to reduce the drift rate to 8ero9 Soop I!"#"J provides equation >&

Equation 6

$$D = \frac{-1.5 \quad a}{A}$$

Equation 7

$$D = \frac{-3 V}{V}$$

Using the F69 an array is created %y splitting the value %et5een the t50 %urns %y a percentage +n this simulation9 one percent 5 as the step change %et5een each case A custom . unge Nutta algorithm 5 as 5 ritten in order to propagate the ephemeris 5 hile controlling the time steps +n the simulation a time step of =" seconds 5 as used The . unge Nutta algorithm also chec(ed to see if the %urn time 5 as passed during the calculation step9 and if it 5 as9 inserted an instantaneous thrust or d6 at that time

+n order to see if the space vehicle ends up at the correct station9 longitude also needed to %e calculated & Although the ephemeris is already calculated in E)+9 this needs to %e converted to an Earth) entered Fi; ed IE) FJ coordinate system & Since longitude is only %ased on the position9 5 e only need to convert the position vector from E)+ to E) F9 given %y Eagle In&d&J in equation ? and @&

Equation 8

 $r_{ecf} = [T]r_{eci}$

Equation 9

	COS	sin	0
[T]=	– sin	COS	0
	0	0	1

5 here 0 is equal to the 0 reen 5 ich sidereal time at the moment This can %e calculated from the current day and time %y first calculating the Julian Date using Equation #" I6allado9!"">J9 then %y finding 0 reen 5 ich ean Sidereal Time I0 STJ %y using equation ## and #! I6allado9 !"">J8

Equation 10

$$JD = 367 \text{ year} - \left(\frac{7\left\{\text{year} + \left(\frac{\text{month} + 9}{12}\right)\right\}}{4}\right) + \left(\frac{275 \text{ month}}{9}\right) + \text{day} + 1721013.5 + 172103.5$$

The equations for nutation in longitude and nutation in o%liquity using the trigonometric

arguments are listed %elo 5 in arc seconds IEagle9 nkdkJk

```
Equation 18
#=-17.20 sin '-1.32 sin2 %-.23 sin2 %<sup>4</sup>+0.21 sin2 '
Equation 19
("=9.20 cos '+0.57 cos2 %+0.10 cos 2 % -0.09 cos2 '
```

After converting the results from equations #? and #@ into degrees and putting them along 5 ith the result from equation #< into equation #\$ the 0 reen 5 ich Apparent Sidereal Time in degrees is o%tained This can %e put %ac(into equation @ 5 hich 5 ill create the matri; to convert the position E) + vector into the position E) F vector

1 ert8 and 4arson I#@@@J provide the equation to calculate longitude from the E)F

.....

Equation 20)= $\tan^{-1}\frac{y}{x}$

The longitude value is calculated at every step of the . unge Nutta and at the end of the script the %urn parameters 5 ith the longitude closest to the desired longitude is selected

- esu&ts

For this simulation9 an or%it and a %urn time 5 ere randomly selected A starting drift rate of # deg:day Ieast5 ardJ 5 as selected as this seems to %e reasona%le for current satellites. The input file can %e seen in Appendi; At These results do not target a specific longitude.

'igu e 3(, E7l3ab.H9ruu4lh**‰aso)**-7a9\$n1t5þ6t7u¢lu 5⊯2qfa909bb7Haa9\$

+n comparison to Figure \$ Figure A sho 5 s an optimal ratio of !At This is very different from the ratio of >A for Figure \$ ho 5 ever %oth still result in a drift rate close to 8 erot

second %urn and its result for %urn ratio and eccentricity &

Run A: Ratio vs Burn 1 Start Time

'igu e 11(1un 2(*u n 1atio) a ying 3ta t Ti! es . atio S #! plots the optimal ratio for the first %urn sho5n %y the hori8ontal a; is and the second %urn #! hours later atio in and a; sho5 the minimum and ma; imum optimal ratios 5 hen varying the start time of the second %urn %y three hours

There is a limit on %oth e; tremes! The values all go to 8ero 5 hen the %urns start too early! Since the simulation calculates an optimal d6 %ased on one impulse? if the %urn starts 5 hen the initial longitude is too far a5ay there is no 5ay that the d6 5 ill %e a%le to achieve the desired longitude 5 ith any %urn ratio! 4i(e5 ise if the first %urn starts too late? there is no time for a second %urn and the %urn ratio is al 5ays #""R!

'igu e 12(1un 2('inal E""ent i"ity) a ying 3ta t Ti! es Similar to the Burn . atio plot sho5n in Figure @9 Ecc S #! plots the final eccentricity for the first %urn sho5n %y the hori8ontal a; is and the second %urn #! hours later Ecc in Time sho5s the minimum final eccentricity 5 hen varying the start time of the second %urn %y three hours

Ecc S #! is consistently larger than the minimum eccentricity e; cept near the end of the data& Ta%le # sho5s the %rea(do5n of the time of the minimum eccentricity)

	75		
	0%00062		
4728713 11(00	67	11%25	0%0006334
	0%00095		
4728713 12(00	8	12	0%000958
	0%00103		
4728713 13(00	8	12	0%001038

4i(e in . un A9 the eccentricity is at a minimum near 5 hen the %urn ratio is "R and the time %et5 een the %urns is high? The optimum time %et5 een %urns also decreases as the %urn ratio gets higher?

• onclusion

0 iven an initial or%it and %urn time9 this simulation successfully ans 5 ers the question of 5 hat si8e t 5 o %urns #! hours apart should %e in order to get a minimum eccentricity value 5 hile targeting a specific longitudek +n addition9 the simulation can vary the separation time %et 5 een the t 5 o %urns in order to further minimi8e the eccentricity valuek

1 hile this simulation does ans 5 er the specific question of the optimal %urn percentage split for a particular or%it9 it is very specific to each case& A general conclusion that can %e made is that if the d6 needed to get 8ero degrees drift rate is too small9 no amount of varying the %urns satellite to point in the correct direction Also9 as satellites reach their final geosynchronous or%it9 they start to (eep trac(of time in terms of the satelliteTs position and the sunTs position) This allo5s spacecraft operators to (eep trac(of 5 hen the satellite 5 ill %e su%ject to thermal constraints) Adding this time system to the simulation 5 ill ma(e it easier for users to calculate %urn times)

Appendi0 A

. un A input file

+nitial Semi ajor A;i	is B "?=</th
+nitial eccentricity	₿&"""@\$#<<<\$A?
+nitial inclination	B &##!A<@=@!</td></tr><tr><td>+nitial raan</td><td>B D&=@#!?<=A></td></tr><tr><td>+nitial arg of perigee</td><td>B \$&#\$?A>##"#</td></tr><tr><td>+nitial true anomaly</td><td>BD"&#?!<<!>A></td></tr><tr><td>Solar . adiation I) pJ</td><td>B #& ! A</td></tr><tr><td>+nitial epoch year</td><td>B !"#!</td></tr><tr><td>+nitial epoch month</td><td>B "\$</td></tr><tr><td>+nitial epoch day</td><td>B !?</td></tr><tr><td>+nitial Epoch hour</td><td>B #!</td></tr><tr><td>+nitial Epoch minutes</td><td>B #\$</td></tr><tr><td>+nitial epoch seconds</td><td>B \$#</td></tr><tr><td>Burn epoch year</td><td>B !"#!</td></tr><tr><td>Burn epoch month</td><td>B "\$</td></tr><tr><td>Burn epoch day</td><td>B !@</td></tr><tr><td>Burn Epoch hour</td><td>в ""</td></tr><tr><td>Burn Epoch minutes</td><td>B ""</td></tr><tr><td>Burn epoch seconds</td><td>В ""</td></tr><tr><td></td><td></td></tr></tbody></table>

Appendi0 B

. un A input file

+nitial Semi ajor A; is I(mJ B < !"? =+nitial eccentricity B & """@