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A Unperturbed geostationary semimajor axis = 42164.2 km

a Orbit semimajor axis

D Drift rate

e Orbit eccentricity

ECF Earth Centered Fixed

ECI Earth Centered Inertial

GAST Greenwich Apparent Sidereal Time

GMST Greenwich Mean Sidereal Time

i inclination

p Semi-latus rectum

� Position vector of the satellite

r Magnitude of the position vector of the satellite

ŕ Acceleration vector

raan Right ascension of the ascending node

) Velocity vector

V Magnitude of velocity vector

ω Argument of perigee

ν True anomaly

x x component of position vector

y y component of position vector

z z component of position vector
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Orbital maneuvers have been studied for a long time.  Hohmann solved the problem of 

transfers between two coplanar circular orbits with a minimum velocity applied to the space 

vehicle (Hohmann, 1925).  The problem of two impulse orbit maneuvers has been studied over 

the years with minor tweaks in order to apply solutions to real spacecraft.  Jezewski and 

Mittleman (1982) wrote about an analytical approach to two fixed impulse transfers, while Jin 

and Melton (1991) concluded that using two impulsive maneuvers of fixed magnitudes is only 

possible for certain thrust directions.

In the current age of affordability in the Aerospace industry, optimization problems are 

becoming increasingly important.  As a satellite nears completion of orbit transfer, plans must be 

made in order to place the satellite into its final orbit.  Geostationary satellites are equipped with 

thrusters that allow the satellite to be commanded to maneuver the spacecraft into the desired 

orbit.  These burns are usually tangential to the orbit plane or orthogonal to the orbit plane.  

Tangential burns are also known as along-track burns, and changes the longitude of the satellite.  

This affects the semimajor axis, the longitude drift rate and the eccentricity vector.  Orthogonal 

burns change the orientation of the orbit plane.  This includes the inclination and the ascending 

node. (Soop, 2010).

This paper deals only with tangential burns in line with the orbit plane.  In order to “stop” 

at the final station location in geosynchronous orbit, the satellite needs to have a semimajor axis 

of 42164.2 km, a drift rate of zero, and an eccentricity vector very close to zero.  

It is usually optimal to command orbit maneuvers during the apsides of the orbit (Sgubini, 

& Teofilatto, 2002), but with affordability being a main driver, for the sake of time, orbit 

maneuvers are sometimes scheduled at non-optimal times.  The time of the maneuver can be 
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varied to change the eccentricity vector direction, however, with this being set by limitations of 

time, having multiple burns enables some variability in the final eccentricity of the orbit.  This 

paper will deal with two burns separated by 12 hours.  This first objective of this work is to 

identify the sizes of these two burns for a specific orbit that will give the result of a final 

eccentricity as close as possible to the target eccentricity.  The second objective is to find any 

general conclusions between the burn sizes and eccentricity that can be used on general orbits.
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The investigation was done by varying the ratio of the two burns and propagating through an

ephemeris at a specified burn time, using Matlab as the computing tool.  The orbit was modeled 

using the two body model equations with no perturbations.  The input sheet includes the 

ephemeris in classical orbit parameters, which are then rotated into Earth Centered Inertial (ECI) 

coordinates for propagation using the equations 1-4 (Wertz & Larson, 1999).  

Equation 1
p=a∗(1−e2)

Equation 2

r=
p

(1+e∗cos❑)
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Equation 4
ω+¿
ω+¿

(¿¿+e∗cosω )

cos¿
¿

ω+¿
ω+¿

(¿¿+e∗cosω )

cos¿
¿

ω+¿
cos ( ¿¿+e∗cos ω )

i∗( ¿ ]

(¿¿+e∗sin ω )−cosraan∗cos i∗¿
sin ¿

sin raan∗¿
( ¿¿+e∗sin ω )+sin raan∗cos i∗¿

sin ¿
cos raan∗¿

¿

−√ μ
p

∗¿

V =[
δx
δy
δz ]=¿

The vector can be propagated forward in time by multiplying a time step with the velocity 

and acceleration found from equation 5 (Vallado, 2007). 

Equation 5

ŕ+
μ

a3
r=0

The initial drift rate of the orbit, or how quickly the orbit is rotating with respect to the 

rotation of the earth, is given by equation 6 (Soop, 2010).  To find the thrust needed to reduce the

drift rate to zero, Soop (2010) provides equation 7.

Equation 6

D=
−1.5∗δa

A
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Equation 7

∆ D=
−3∆ V

V

Using the ΔV, an array is created by splitting the value between the two burns by a percentage.  

In this simulation, one percent was the step change between each case.  A custom Runge Kutta 

algorithm was written in order to propagate the ephemeris while controlling the time steps.  In 

the simulation a time step of 60 seconds was used.  The Runge Kutta algorithm also checked to 

see if the burn time was passed during the calculation step, and if it was, inserted an 

instantaneous thrust or dV at that time.

In order to see if the space vehicle ends up at the correct station, longitude also needed to 

be calculated.  Although the ephemeris is already calculated in ECI, this needs to be converted to

an Earth Centered Fixed (ECF) coordinate system.  Since longitude is only based on the position,

we only need to convert the position vector from ECI to ECF, given by Eagle (n.d.) in equation 8

and 9.

Equation 8
recf =[ T ] reci

Equation 9

[ T ]=[−
cos θ sin θ 0
sinθ cosθ 0

0 0 1]
where θ is equal to the Greenwich sidereal time at the moment.  This can be calculated from the 

current day and time by first calculating the Julian Date using Equation 10 (Vallado,2007), then 

by finding Greenwich Mean Sidereal Time (GMST) by using equation 11 and 12 (Vallado, 

2007).  
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Equation 10

JD=367∗year−∫{7 {year+∫( month+9
12 )}

4
}+∫(275month

9 )+day+1721013.5+

( second
60

+minute)



The equations for nutation in longitude and nutation in obliquity using the trigonometric 

arguments are listed below in arc seconds (Eagle, n.d.).

Equation 18
∆ φ=−17.20 sin Ω−1.32 sin2 L−.23 sin 2 L'

+0.21 sin 2Ω
Equation 19

Δε=9.20 cos Ω+0.57cos2L+0.10cos 2L '−0.09cos2Ω

After converting the results from equations 18 and 19 into degrees and putting them along with 

the result from equation 14 into equation 13 the Greenwich Apparent Sidereal Time in degrees is 

obtained.  This can be put back into equation 9 which will create the matrix to convert the 

position ECI vector into the position ECF vector.

Wertz and Larson (1999) provide the equation to calculate longitude from the ECF 

vector.  

Equation 20

λ=tan−1 y
x

The longitude value is calculated at every step of the Runge Kutta and at the end of the script the 

burn parameters with the longitude closest to the desired longitude is selected.  
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For this simulation, an orbit and a burn time were randomly selected.  A starting drift rate of 

1 deg/day (eastward) was selected as this seems to be reasonable for current satellites.  The input 

file can be seen in Appendix A.  These results do not target a specific longitude.
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In comparison to Figure 3, Figure 5 shows an optimal ratio of 25.  This is very different from the 

ratio of 75 for Figure 3, however both still result in a drift rate close to zero.
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Run A: Ratio vs Burn 1 Start Time

Ratio Max

Ratio Min

Ratio @ 12

 

 
Figure 11: Run A: Burn Ratio Varying Start Times

Ratio @ 12 plots the optimal ratio for the first burn shown by the horizontal axis and the second 

burn 12 hours later.  Ratio Min and Max show the minimum and maximum optimal ratios when 

varying the start time of the second burn by three hours.  

There is a limit on both extremes.  The values all go to zero when the burns start too 

early.  Since the simulation calculates an optimal dV based on one impulse, if the burn starts 

when the initial longitude is too far away there is no way that the dV will be able to achieve the 

desired longitude with any burn ratio.  Likewise if the first burn starts too late, there is no time 

for a second burn and the burn ratio is always 100%.
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Run A: Ecc vs Burn 1 Start Time

Ecc Min Time

Ecc @ 12

 

 Figure 12: Run A: Final Eccentricity Varying Start Times
Similar to the Burn Ratio plot shown in Figure 9, Ecc @ 12 plots the final eccentricity for the 

first burn shown by the horizontal axis and the second burn 12 hours later.  Ecc Min Time shows 

the minimum final eccentricity when varying the start time of the second burn by three hours.  

Ecc @ 12 is consistently larger than the minimum eccentricity except near the end of the 

data.  Table 1 shows the breakdown of the time of the minimum eccentricity.
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Table 1: Run A: Eccentricity Varying First Burn Start Time









75

4/28/13 11:00
0.00062

67 11.25 0.0006334

4/28/13 12:00
0.00095

8 12 0.000958

4/28/13 13:00
0.00103

8 12 0.001038

Like in Run A, the eccentricity is at a minimum near when the burn ratio is 0% and the time 

between the burns is high.  The optimum time between burns also decreases as the burn ratio gets

higher.
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Given an initial orbit and burn time, this simulation successfully answers the question of 

what size two burns 12 hours apart should be in order to get a minimum eccentricity value while 

targeting a specific longitude.  In addition, the simulation can vary the separation time between 

the two burns in order to further minimize the eccentricity value.

While this simulation does answer the specific question of the optimal burn percentage split 

for a particular orbit, it is very specific to each case.  A general conclusion that can be made is 

that if the dV needed to get zero degrees drift rate is too small, no amount of varying the burns 



satellite to point in the correct direction.  Also, as satellites reach their final geosynchronous 

orbit, they start to keep track of time in terms of the satellite’s position and the sun’s position.  

This allows spacecraft operators to keep track of when the satellite will be subject to thermal 

constraints.  Adding this time system to the simulation will make it easier for users to calculate 

burn times.
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Run A input file

Initial Semi Major Axis        : 42086
Initial eccentricity           : .000931444358
Initial inclination            : .112549692
Initial raan                   : -.691284657
Initial arg of perigee         : 3.138571101
Initial true anomaly           : -0.182442757
Solar Radiation (Cp)           : 1.25
Initial epoch year             : 2012
Initial epoch month            : 03
Initial epoch day              : 28
Initial Epoch hour             : 12
Initial Epoch minutes          : 13
Initial epoch seconds          : 31
Burn epoch year                : 2012
Burn epoch month               : 03
Burn epoch day                 : 29
Burn Epoch hour                : 00
Burn Epoch minutes             : 00
Burn epoch seconds             : 00
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Run A input file

Initial Semi Major Axis (km)   : 42086
Initial eccentricity           : .0009
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