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ABSTRACT 

 
 

LEVENBERG-MARQUARDT FILTER FOR ORBIT ESTIMATION 

 
 

By Robert Ziegler 

 

 

 

 

This paper tests the Levenberg-Marquardt method of least-squares as it is applied to orbit estimation 

using noisy Doppler data. Doppler data used in the analysis is simulated by calculating range rate at 

multiple points along the path of a satellite at times the satellite would pass over a real ground 

station. The paper begins by discussing how real Doppler data would be used for orbit estimation. 

Next, a reference frame used for the analysis is defined. Then, the methods used to acquire 

simulated data are 
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1. INTRODUCTION 

 

Orbit determination is a tool used by engineers, scientists, and hobbyists to understand the trajectory 

of objects travelling through space. Using orbital mechanics and observations of the position and 

velocity of the satellite, observers can predict the position of the object over time. While this 

prediction was problematic for the first satellite in space, technology now allows precise tracking of 

satellites using enhanced physical models and computing power. Presently, anyone with access to 

the internet can either look up the ephemeris of their desired satellite or download sophisticated 

software that can approximate and display the trajectory of many orbiting satellites; however, a 

different approach is proposed in this report. 

As more satellites are introduced into earth orbit, novel approaches to orbit determination are 

required. While satellites can send ephemeris data and computer software can approximate the 

position of the satellite over time, there must be alternative methods which do not rely on such 
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Figure 1.1 Damped Least Squares Estimation [1]. 

 

 

1.1 DOPPLER ESTIMATION 

 

Many approaches have been taken to use Doppler data to predict the orbit of a satellite. Some of the 

simpler methods assume a circular orbit, while the more complex variations are flexible with orbital 

parameters but require more information on the orbital history of the satellite. In this section, texts 

and articles which discuss the Doppler effect DE, and how DE of a received signal pertains to orbit 

determination. 

As new equipment and software are introduced into space systems, testing these novelties in the 

field is critical. The analysis of the Precise Range and Range-rate Equipment (PRARE), a satellite 

track
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used to acquire ephemeris data and allow tracking of future passes of the satellite. After processing, 

the X-band signal is modulated and sent back to the PRARE space segment where range ߩ 

measurements are calculated using the two-way signal time [2]: 

 

 
1 

ߝ  +  ݊݅ߩ߂��െ  ݎݐߩ߂  െ (ݎݎܿݐ߂  + ݐ߂)ܿ  = ߩ
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between relative velocity ݐݒ and Doppler shift can be calculated (annotated from [3]): 
 

 

 
 

 ݐݒ0݂
 = ݂߂

ܿ 

(1.6) 

 

 

 

where 

 
݀( ܲ െ ݏܲ )݃ 

 = ݐݒ
ݐ݀

 
(1.7) 

 

 

in spherical coordinates, and ݂0 is the carrier frequency. To find ݐݒ, velocities of the satellite and 

ground station are studied in ECEF coordinates, and perturbing forces are analyzed. 

Finding a value for ݐݒ requires an orbit generator with corrections for the following perturbing 

forces R, S, and W (annotated from [3]): 

 

 
 (1.8) ࢠܹ + ܵ + ܴ࢘ = ࢽ

 

 

 
 

 · 2ܴ · ܬ · ߤ ·�ൌ�െͳǤͷ ܭ
1

 
 4ݎ ܧ 2

(1.9) 

 

 

 
 sin2(݅)) (1.10) · (ߥ + ߱)ሺͳ�െ�͵�sin2ܭ = ܴ

 

 

 
 

 (1.11) ((݅)sin2 ·(ߥ + ߱ )2)sin · ܭ = ܵ
 

 

 
 

 sin(2݅) (1.12) · (ߥ + ߱ )sin · ܭ = ܹ
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student science endeavor. In orbit, the proximity of the satellites made individual identification 
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rotating coordinate system [5]: 
 

 

 
 

 (1.20a) ݏݎ =   ݏݎ

 
 ((0߶ + ݐ · ݏ߱)sin ݅ · sin)sinെ1 = ܴܧ߶

 
(1.19b) 
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 )sinെ1 + ߜ ]sin  ݎ  ܴ
݅ െ�߱ · cos ߱)[ݐ(݅ െ�߱ · cos ߱)]sin [( ߜ cos · ܧܴ ) 

ݎܵ + ܧܴ ݉ ܵ  ܧ  
 ܧ ܵ ܧ ܵ ݉

=    

ξܴ2  + ܴ2 െ 2ܴ  ݎ  sin[ߜ + sinെ1 ( 
 [ݐ(݅ െ�߱ · cos ߱)]cos [( ߜ cos ܧܴ

ݎܵ + ܧܴ ݉ ܵ  ܧ ܧ ܧ  
 ܧ ܵ ݉

 
(1.20) 

 
 

 

Doppler shift can now be found using ߩሶ [5]: 
 

 

 
 

 ݐ݂
 ( ሶ ή ሺെߩ = ݂߂

ܿ 

(1.21) 

 

 

 

where ݂ݐ is the transmitted frequency of the downlink signal of the satellite, and c is the speed of 

light. Using Doppler measurements to improve global positioning system (GPS) performance is the 

topic of the next article. 

As aircraft maneuver through the air, the Doppler shift induced on received signals can be much 

greater than observed values at a ground station. In their investigation, Agostino, Manzino, and 

Marucco [6] use a Kalman filter estimator to improve GPS tracking of aircraft using Doppler 

measurements. In this process, a precise ephemeris of a satellite is used, along with the inherent 

Doppler shift to calculate the velocity of the aircraft. It is determined that using this Kalman filter 

estimation reduces errors caused by noisy measurements. 

In another experiment, Ialongo [7] uses a cycle counter to read two-way Doppler measurements and 

produce range rate of a satellite. This method feeds an input frequency ݂݅ into a counter, where 
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݂
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(1.23) 

 

 

 

where 

 
ܿܰ2 

ܴܴܰ = 
2048ܰ2 + 26240ܰ1 

(1.24) 

 

 

ܰ1 and ܰ2 are cycle counts, and 
 

 

 
 

 (߶ cos ݏݒݐߩ�െ ߠ sin ݐݒݐߩ + ݐݒݐܴ)
 = (߶ ,ߠ)ܨ

 ݐݒݐܴ

(1.25) 

 

 

 

Here, ߩ is the distance travelled by the signal. 

 

In this section, methods of measuring the Doppler effect and range rate of a satellite were discussed. 

Now, applications to orbit determination will be examined. 

 

 
1.2 ORBIT DETERMINATION FROM DOPPLER DATA 

 

Having covered a variety of methods used to measure the Doppler shift inherent in satellite 

communication, orbit determination schemes which use this data are presented in this section, 

starting with a simple circular orbit-based algorithm. 

The experiment presented by Schuch [8] uses observations of the orbital period τ of a satellite to 

estimate a circular orbit. Using Doppler measurements, a Time of Closest Approach (TCA) is 

determined by finding when the received frequency from a satellite is equal to the transmitted 
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frequency, that is, when there is no Doppler shift present. Noting the TCA, a second pass is 

evaluated, and a first estimation of τ can be made. The error incurred from the rotation of the earth is 

corrected by repeating this process for two successive descending passes. The time elapsed between 

these passes is an integer multiple of τ. This integer can be calculated with the equation (annotated 

from [8]): 

 

 
݊߬ 

 ( ) ݐ݊݅ = ݊
 ݐݏ݁߬

(1.26) 

 

 

 

where ߬݁ݐݏ 
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satellite with 
 

 

 
 

 ݎ݂
 ሶ  = ܿ (1 െ )ߩ

 ݐ݂

(1.28) 

 

 

If the distance between the satellite and each of the ground stations is known at two different times, 

the Keplerian orbit can be formed through methods which will be discussed in the next chapter. 

Moving to a higher earth orbit, an experiment performed by Estefan [11] uses differenced Doppler 

for elliptical orbiters. A method of orbit determination for high-orbit elliptical satellites, Very Long 

Baseline Interferometry (VLBI), is under investigation [11] for its ability to improve orbit accuracy. 

The problem with this process is its high cost. Termed “quasi-VLBI,” an alternative differenced 

(two-way minus three-way) Doppler is proposed. While data measured with differenced Doppler is 

not as accurate as seen with VLBI, Doppler and range data can be supplied much faster for 

navigation purposes [11]. 

Differenced Doppler first relies on extracting range measurements from Orbit Analysis and 
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subscripts represent different ground stations. 

 

Guier and Weiffenbach [12] use the entirety of a Doppler curve to obtain orbital elements in their 

article. While many Doppler-based orbit determination schemes include an intermediary process, 

steps can be taken to maximize Doppler data by directly calculating the six orbital elements from the 

frequency shift curve. Additional elements, totaling eight, are extracted to account for errors, such as 

refraction from the ionosphere. Although computational cost is higher using this single-pass method, 

its results have shown that such calculations are possible. The final article reviewed in the present 

chapter concerns the use of the Doppler effect in GPS measurements. 

The derivation of the GPS relativistic Doppler effects is given by Zhang, et. al [13]. In the GPS 

observation system, additional changes in frequency are present. These shifts are caused by gravity 

potential from the geoid shape of the earth, the gravity field of the earth, and the orbital eccentricity 

of the satellite. To correct the relativistic effects, a special relativity term is added to the equation for 

received frequency, which will not be included in this paper as these corrections are not desired for 

the present analysis. 

 
 

1.3 RESEARCH OBJECTIVES 

 

Sophisticated software has enabled aerospace companies to track satellites with accurate measure. 

For civilian satellite enthusiasts, there is also satellite tracking software, although these programs 

take a loss on accuracy. To mitigate this loss, observations of frequency shift from the transmitted 

radio signal of a satellite can be used to determine the orbital elements of the orbit. 

The primary objective of this report is to define an algorithm which uses range rate of a satellite 

with respect to a ground station to determine the orbital elements of the satellite. To do this, 

measurements of the signal received from the satellite will be taken as the satellite travels overhead. 

The collection of these frequency data points will form a Doppler curve which will be used to 
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calculate the range rate. A least-squares algorithm will then be introduced to an orbit generator for 

final orbit determination. 

In the next chapter, data will be extracted from the described orbit propagator. The data pulled will 

have contain the mentioned noise needing correction. The LMA will be used to eliminate the noisy 

data, and an orbit will be reproduced using the range-rate between the simulated orbiting object and 

a simulated ground station. 
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2. ORBITAL DETERMINATION FROM GROUND SITE OBSERVATIONS 

 

 

To establish the trajectory of an object through space, six independent state parameters are 

necessary. For example, the orbit of a satellite about the earth can be determined by the cartesian 

state vector, which gives x, y, and z components for the radial and velocity vectors. For this 

experiment, observable data will be calculated from the orbit propagated from a state vector. One of 

these observables, range rate, will be calculated using the Doppler signal from the satellites under 

investigation. For comparison, additional observables will be included in alternative test cases for 

this orbit determination problem. 

The present chapter discusses theory relevant to orbital determination using ground site 

observations. The first part of this chapter discusses the Julian Date system and sidereal time. These 

methods of timekeeping simplify later calculations. Next, the Earth-Centered Inertial reference 

frame is converted to a frame local to the surface of Earth. Then, the theory of orbital determination 

using the described independent quantities is discussed. Finally, because the trajectory of an object 

travelling through space can be altered by outside forces, orbital perturbations are briefly discussed. 

 
 

2.1 TIME MANAGEMENT 
 

As with most problems involving kinetics, time is a necessary component when determining the 

orbit of a satellite with observational data. Unlike the ubiquitous solar time, which tracks the 

movement of the Sun through the sky, universal time (UT) monitors the passage of the Sun through 

the meridian of Greenwich, London, where terrestrial longitude is defined as zero degrees. 

Measuring westward from the Greenwich meridian to the local meridian, local standard time in 

calculated by adding one hour per each time zone passed. 
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Figure 2.1 Topocentric Coordinate System ([14] as adapted by [17]). 
 

 

 

 

 
 

 

Figure 2.2 Cross-section of the earth [17]. 

 

 
The oblateness and eccentricity of the earth are defined, respectively, by [14]: 
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 ܴ െ  ݍܴ݁

݂ ݈ܾ = ൌ�ͳ�െ�ξͳ�െ ݁2 
 ݍܴ݁

(2.34) 

 

 

where the relation between e and ݂݈ܾ is 
 

 

 
 

 
 

݁ = ξ2݂݈ܾ െ�݂2 
 ݈ܾ

(2.35) 

 

 
 

The distance from 0ܥܧ to 0ܦܧ is ܴ2݁ߣ sin2 ߣ, where ܴߣ is defined as [14]: 
 

 

 
 

 ݍܴ݁ ݍܴ݁
 = = ߣܴ

ξͳ�െ��݁2 sin2 ߣ ξͳ�െ�(2݂݈ܾ െ ݂2 ) sin2 ߣ 
 ݈ܾ

 

(2.36) 

 

 

The position of S with respect to 0ܥܧ can now be defined as [14]: 
 

 

 
 

 ݕࢉࢋ ߪ sin ߣ cos (ܪ + ߣܴ) + ݔࢉࢋ ߪ cos ߣ cos (ܪ + ߣܴ) = ܴ
 

+[(ͳ�െ�݂)2ܴܪ + ߣ] sin ݖࢉࢋ ߣ 

 

(2.37) 

 
 

where H refers to height of the ground station with respect to the reference ellipsoid. 

 

 
 

2.3 THE DOPPLER EFFECT 
 

The Doppler effect is a phenomenon that increases or decreases the observed frequency of a wave 

due to the relative velocity between the source of the wave and the observer. This frequency shift is 

most recognizable in the siren of a passing ambulance, but it can also occur in light and radio signal 

reception. Measuring the frequency of stellar light, astronomers can determine if a star is moving 
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with respect to the earth. Likewise, a received radio signal from an orbiting satellite will have a 

frequency shift, though steps are typically taken to correct this effect instantaneously. To attain a 

better understanding of the Doppler effect, the components of frequency are examined. 

The velocity of a wave ܸ݁ݒܽݓ from a stationary source can be measured in terms of wavelength λ 

and transmitted frequency ݂ݐ with the equation 

 

 
 (2.38) ݐ݂ߣ = ݁ݒܽݓܸ

 

 

 

If the source has a relative velocity with respect to an observer, the observed frequency ݂ݎ is shifted 

from ݂ݐ, as per the equation: 

 

 
 ݁ܿݎݑݏܸ

  + 1)  ݐ݂  =   ݎ݂
ܸ 

) 
 ݁ݒܽݓ

(2.39) 

 

 

if the source is moving at velocity ܸ݁ܿݎݑݏ towards an observer, or 
 

 

 
 

 ݁ܿݎݑݏܸ

  െ 1)  ݐ݂  =   ݎ݂
ܸ 

) 
 ݁ݒܽݓ

(2.40) 

 

 

In the case of signal measured from a passing satellite, ܸ݁ݒܽݓ is hereby referred to as the speed of 

light c. 

With a simulated radio signal and an orbit propagator, equations (2.11) and (2.12) will be used later 

in this paper to determine the range-rate of the satellite. 
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2.4 ORBITAL PERTURBATIONS 
 

In a basic two-body problem where the center of mass is dominated by a massive spherical body, an 

unaltered orbit could be achieved by the secondary body, though, in reality, none of these 

assumptions hold true. Adding complexity to the two-body problem, there are four forces that alter 

the orbital elements of a satellite: third-body perturbations, perturbations due to non-spherical 

planet, atmospheric drag, and solar radiation pressure [18]. 

The first orbit influencing force, third-body perturbations, is caused by the sun and moon. These 

bodies induce periodic changes to each orbital element of the satellite. Additionally, secular 

variations are experienced by the longitude of the ascending node and the mean anomaly due to the 

gravitational presence of these bodies. 

The second force in this list is due to the ellipsoidal shape of the earth. While the planet is typically 

modelled as having a spherical shape, a better estimate shows that more mass is found along the 

equator, leaving a flattening effect at the poles. To accurately predict an orbit, zonal coefficients ݊ܬ 

are used to form a geopotential function. 

The oblateness of the earth dominates the geopotential expansion. In this expansion, the 2ܬ term 

represents perturbations caused by this flattening. This force results in secular changes in the 

longitude of the ascending node and the argument of perigee [18]. 

The third orbit perturbing force is atmospheric drag. As a body moves through a fluid, momentum is 

lost from the body and imparted to particles in the fluid. This exchange of momentum causes a 

decrease in the velocity of the body. In the case of a satellite, a decrease in velocity means orbital 

decay. Fluctuations in atmospheric density are caused by varying solar activity. During periods of 

high solar activity, altitudes in the range of 500 – 800 km can have an atmospheric density around 

two orders of magnitude greater than seen during low solar activity [18]. 

The final force in this list is caused by solar radiation pressure. In the lower atmosphere, 
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atmospheric drag is the most influencing force on orbital elements, but at altitudes greater than 800 

km, solar radiation pressure becomes the greater force [18]. 
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3. ORBIT SIMULATION AND DATA ACQUISITION 

 

Paramount to the success of orbital determination is accurate data acquisition. While the data used 

for the present paper rely on a simulated orbit, realistic scenarios present errors which must be 

accounted for. The goal of this chapter is to provide the method used to calculate an accurate orbit 

using noisy data. Reasons for this method choice will be discussed, as well as corrections for the 

orbital perturbations outlined in the previous chapter. 

The first part of the chapter will give a brief history of statistical orbital determination (OD). Next, a 

discussion on how initial orbital data is obtained using MatLab software is given. The corrections 

used for orbital perturbations will be examined. To accurately predict the future location of an 

orbiting body, all perturbations mentioned in chapter 2 must be considered. After this, the sources of 

data error and the procedures used to reduce these errors will be explained. 

 
3.1 A BREIF HISTORY OF ORBITAL DETERMINATION 

 

While astronomers have contemplated motion through space for millennia, it wasn’t until Johannes 

Kepler (c.1610), a German mathematician, astronomer, and astrologer discovered that not all orbits 

are circular that true statistical OD began [14]. Kepler was a student of a wealthy astronomer, Tycho 

Brahe, whose belief
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attributed to Gauss, who published his own works for OD methods in 1809. While Gauss and 

Legendre were trying to figure out who discovered LS, another hallmark achievement was 

accomplished. 

In 1801, the Ceres comet was rediscovered after astronomers used observations to predict its 

location. This was the first time OD was used to locate an orbiting body [20]. Over next two 

decades, many mathematicians worked to refine the work done by Gauss and Legendre, though the 
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 the frequency received at the ground station = ݎ݂

 

 the frequency transmitted from the satellite = ݐ݂

 

-ሶ = the line-ofߩ
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[20]. Vallado and McClain [20] state biases are “a constant offset from the true value.” In 

astrodynamics, it is common enough to assume this bias is zero. Drift is known as a slow variation 

to data over time. The largest contributor to drift is clock instabilities in the satellite, which can be 

cause by temperature differentials [20]. Due to the short windows of visibility, drift will be 

negligible in the present study. Noise is a statistical indication, or standard deviation of varying data 

around the measured average. 

Noise errors can stem from several sources. The on-board oscillator can degrade accuracy of the 

Doppler shift measurements without short-term stability [22]. According to Bart Root (personal 

communication, 2018), a lecturer at the Delft University of Technology in Delft, Netherlands, this 

makes tracking smaller satellites (e.g., CubeSats) through one-way Doppler measurements difficult 

due to the cheap oscillators used. Additional sources of noise may stem from surface radio 

frequency (RF) emissions or other air/space vehicles. 

Mathematical modeling errors happen during data processing. This can mean incorrectly entered 

data, typos in coding, and general misunderstanding of data field (Bart Root, personal 

communication, 2018). The best way to avoid modeling errors is to take care in both data recording 

and coding. 

 
 

3.2.2 Two-Line Elements (TLEs) 

As mentioned in chapter 2, six elements are needed to accurately predict an orbit. While the present 

study focuses on the use of range-rate information supplied through Doppler data, initial knowledge 

of the location of the satellite is necessary, according to Gauss, who states in his book, Theoria 

Motus (as translated in [19]), “… this problem [of accurate OD] can only be properly undertaken 

when an approximate knowledge of the orbit has been already attained.” Gpredict, a real-time 

satellite tracking application, will be used to supply TLE data to MatLab to form an initial estimate 
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 2[(࢞)σሾ݂݅ = (࢞)ܵ
݅=1 

 

(3.2) 

 

 

 

where N is the number of data points and x is a vector of parameters ݆ݔ, j = 1,2,3,…,n. The vector of 

residuals f is found by assembling the N functions ݂݅(࢞), where i = 1,2,3,…,N, resulting in [24] 

 

 
 (3.3) .ࢌܶࢌ = (࢞)ܵ

 

 

 

Numerous mathematicians have made alterations to Gauss’s method for both better understanding of 

the problem and to decrease computational cost. 

Also known as the damped least-squares (DLS) method, the Levenberg-Marquardt algorithm 

(LMA) is one such modified algorithm that solves curve fitting problems. The LMA is a 

combination of the steepest descent method (also known as gradient descent method) and Gauss- 

Newton method. 

 
 

3.3.1.1 The Steepest Descent Method 

Suited for general minimization problems, in the steepest descent method (SDM), parameter values 

are updated in the “downhill” direction (i.e., towards the minimum). This method is best suited for 

problems with trivial objective functions [23]. Starting with the gradient 2v(x) of S(x), the SDM 

steps down along the gradient [24]. Using t, the step length along the step path, it is shown that 

 

 
െ�t ܠ)ܵ

 

 

 �  
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where ܵ(࢞) was defined in Eqn. (3.2). 
 

The SDM uses (ܠ െ�tܞ) in place of x and iterates forward from a new position. This process is 

carried on until a t no longer exists for Eqn. (3.4), at which point the operation has converged. 

 
 

3.3.1.2 The Gauss-Newton Method 

In the Gauss-Newton method (GNM), a sum-of-squares objective function is minimized. This 

method assumes the desired function is approximately quadratic near the optimal solution [23]. The 

GNM allows faster convergence than the gradient descent method when solving moderately sized 

problems. 

The GNM takes advantage of the fact that the gradient v(x) must be zero at the minimum. That’s to 

say, the functions (࢞)݆࢜, j = 1,2,3,…,m, create a nonlinear set of m functions with m unknowns x 

such that [24] 

 

 
 (3.5) .0 = (࢞)࢜

 

 

 

The solution to Eq. (3.5) lies on the local minimum or maximum of the function ܵ(࢞). Further 

analysis of Eqs. (3.2-3.3) suggests gradient components [24] 

 

 
ܰ 

ݒ2 ݂ σ 2 = (࢞)݆   ݆ݔߜ/(࢞) ݂݅ߜ(࢞)݅ 

݅=1 

(3.6) 

 

 

 

which leads to 
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σ݊ ݇ݍ Ɂ(࢞)݆ݒ 

݇=1  
ൌ�െ(࢞) ݒ 

Ɂ  ݇ݔ 

(3.11) 

 

 

 

for each element in j. Thus, incorporating Eqns. (3.7) and (3.9), 
 

 

 
 

 Ɂ(࢞)݆ݒ 
= σܰ [ (࢞) ݂ + (࢞) ܬ(࢞) ܬ 

 (࢞)2݂݅ߜ
] 

Ɂ݇ݔ 
݅=1 ݅݇ ݆݅ ݅ Ɂ݆ݔɁ݇ݔ

 

(3.12) 

 

 

 

The GNM iterates forward, using (x + q) in place of x and repeats the process until the value of q 

 

falls below a prescribed tolerance or 
 

 

 
 

 (3.13) .( ࢞)�ܵ ( + ࢞)ܵ
 

 

 

3.3.2 Marquardt’s Method 

Using both the gradient descent and Gauss-Newton methods, the LMA changes based on the value 

of an algorithmic parameter λ, as seen in the equation (adapted from [24]): 

 

 
 (3.14) ࢌܶࡶ- = q(ࡰλ + ࡶࢀࡶ )

 

 

 

where: 
 

 

 

 transpose of J = ܂۸

 

D = a diagonal matrix with positive diagonal elements 

 

f = column vector of residuals 
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λ should be increased by the same factor followed by repeating Eqn. (3.14). 

 

Marquardt’s modified LS algorithm was tested for its curve fitting capability. The decaying 

exponential function 

 

 
 ݅ݔ3ܿ݁�כ 2ܿ + 1ܿ = (࢞ ,݅)ݕ

�T
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In the next chapter, the Levenberg-Marquardt algorithm, as it is applied to the present study, will be 
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4. MARQUARDT DAMPED LEAST SQUARES FILTER DESIGN 

 

The Levenberg-Marquardt Algorithm (LMA), also known as the Marquardt algorithm, is acclaimed 

for its proficiency in orbit estimation. The LMA is robust and allows for a higher degree of error in 

measured data if your initial estimate of the state vector is reasonable [26]. The Levenberg- 

Marquardt Filter (LMF) used in the present study borrows from the LMF outlined by Nash [24] 

with modifications presented by Transtrum and Sethna [27]. The algorithm provides a “best 

estimate” for state vector x when provided with noisy data and an initial “estimated” state vector. As 

it was applied to the present investigation, data was collected from a simulated orbit, then the orbit 

was perturbed to provide an initial estimate to the system. 

 
 

4.1 ACQUIRING DATA 

 

Using NORAD Two-Line Element (TLE) data retrieved from Celestrak, the radial and velocity 

components of a given satellite are calculated using the Simplified General Perturbations 4 (SGP4) 

propagator, which can be found online in many computing languages. The MatLab version of the 

SGP4 propagator used in the present paper, written by Mahooti [28], can be found on the 

MathWorks website. Initially, azimuth and elevation data taken from Gpredict satellite tracking 

software are used to generate the “truth” state vector. 

Gpredict (GP) is a free, downloadable satellite tracking application and was the original source of 
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problems arose when examining satellites in a larger orbit. Curtis [14] explains the Gauss method in 

detail and mentions that the time between the measured angles should be small. While it is possible 

to manipulate the output from GP to an extent, the software did not provide data with short enough 

time intervals. This became apparent as state vectors generated for larger orbits (e.g., orbits of 

NAVSTAR and MOLNIYA satellites) were too flawed to provide adequate testbeds. Learning from 
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where 

 

 ࣋  is the 
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brief discussion on the formation of the LMF is given, elaborating on the description given in 

Chapter Three. Then, modifications proposed by [27] are explained. 

In the study, “A Method for the Solution of Certain Non-Linear Problems in Least Squares,” 

Levenberg [32] proposed damping of parameter increments to improve first-order Taylor series 

approximations when a flaw was noticed “standard” methods. In past procedures [32] least squares 

algorithms using linear approximations found updated values for estimated parameters, but the 

algorithm would fail if the new values were not sufficiently close to the initial estimate. This is 

because the algorithm may neglect higher order term, which leads to a larger sum of squares of the 

residuals. Thus, Levenberg [32] determined that finding function residuals under damped conditions 

was a beneficial alternative. This was done by including a damping parameter ߣ 
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steps to those of previous steps. Should the sum of squares resulting from the corrected set of 

parameters be greater than the previous sum of squares, the algorithm favors the SDM. Conversely, 

if the new sum of squares is less than the previous iteration, the method proceeds with the GNM. 

The algorithm, once supplied with a vector of initial estimates p and recorded data, iteratively 

repeats the following steps [27]: 

1. Calculate new data and Jacobian values based on the updated parameters. 

 

2. Calculate new Marquardt pa
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smaller problems, decreasing and increasing factors of 3 and 2, respectively, work best [27]. Nash 

 

[24] suggests making decreasing and increasing factors 0.4 and 10, respectively. 

 

To use the indirect method for determining ߣ, a step size ȟ�is first determined. The damping 

parameter that ensures |ߜ| �ȟ�is then found. As this method for determining ߣ will not be used in 

this study, greater detail on the matter will not be provided in the present paper. For further 

information on this indirect method for finding ߣ, see literature such as Mor݁ƴ [34]. Transtrum and 

Sethna [27] determined that some problems perform better using the direct method for determining 

 .while others favor the indirect method ,ߣ

 

There are several options when choosing the scaling matrix ࡰܶࡰ. While Levenberg first determined 

the scaling matrix be the identity matrix I [27], both Levenberg [32] and Marquardt [33] settled on 

using the diagonal entries of [24] ࡶܶࡶ. Mor�ƴ  [34] determined that the optimal scaling matrix would 

be a diagonal matrix which updates its entries with the largest diagonal entries of ࡶܶࡶ encountered 

through the duration of the run. 

 
 

4.2.2 Gain Factor 

To ensure a faster convergence using the LMF a gain factor β is used to control which corrections 

are accepted. This gain factor is formulated as follows (adapted from [35]): 

 

 
 ( + ࢞)ܨ െ (࢞)ܨ

 = ߚ
 ()ܮ െ ()ܮ

(4.1) 

 

 

 

where F(x) is the data function evaluated with parameter vector x and F(x + q) is the data function 

evaluated with parameter correction vector q. The denominator is evaluated as 
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1 
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where 
 

 

 
 

 (4.5) ࢌԢ = ۸Tࡲ
 

 

 

When ߚ falls below a predetermined value ߳4 the parameter correction is rejected and ߣ in 

increased. Otherwise, the parameter correction is accepted and ߣ is decreased. 

 
 

4.2.3 Broyden Rank-1 Jacobian 

 

Each time a correction is accepted to the parameter vector, the Jacobian matrix is updated so new 

corrections can be determined. This Jacobian matrix is typically evaluated as 

 

 

Jij = Ɂ�iΤɁ� 
j 

(4.6) 

 

 

 

or 



43  

 (࢞)ࡲ െ (࢞ߜ + ࢞)ࡲ
 = ࡶ

 ࢞ߜ

(4.7) 

 

 

 

As calculating J each time can become computationally expensive, Transtrum and Sethna [27] 

suggest using an alternative update method set forth by Broyden [36]. Broyden [36] determined that 

a quasi-Newton root finding method that updates J with first derivatives on the first iteration, then 

alternates between reevaluating J with a rank-1 update. This Broyden rank-1 update is written as 

(adapted from [36]) 

 

 
 ܶ(ࡶ െ (െ1݇࢞)ܨ െ (݇࢞)ܨ)

 +  െ1݇ࡶ =  ݇ࡶ
ܶ

 
(4.8) 

 

 

 

where subscript k indicates the current step and k-1 represents the previous step. 

 

 

4.2.4 Convergence and Stopping Criterion 

If the software running the least-squares estimator is not told when it is a good place to stop, it may 

continue iterating indefinitely. This implies that either the parameters have converged to a solution 

and further iterations cease to produce worthwhile results, or the function is not solvable under the 

given conditions and further iterations produce worthless results. Convergence and stopping criteria 

are added to the least-squares program to ensure further calculations are not carried out once the 

criteria are met. It is suggested to use the following convergence criteria (adapted from [35]): 

 ȁ��߳1|(࢞)Ԣࡲ|| .1
 

 ||||
2. 

 ||ࢻ+࢞||
�߳2, where ߙ is greater than zero 

 

3. ݇ �݇݉ܽݔ 
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The first criterion stops the program should the highest absolute value in the gradient vector be less 

than a user specified value ߳1. This will be called the gradient convergence criterion. The second 

criterion stops the program if the highest absolute value of the correction vector divided by its 

counterpart in the absolute value of the parameter vector plus ߙ, a small number greater than zero, is 

less than the user specified ߳2. The third criterion stops the program should the iteration count meet 

or exceed some predetermined value. 

 

 
4.3 BUILDING THE SOFTWARE 

 

For this study, MatLab was used to write the orbit determination software. To use the LMF, a 

program was first designed to calculate the “truth” state vector from the TLE set of a given satellite. 

Next, a program to propagate the state vector for the pass duration of the satellite is used, and 

simulated data is collected. Then, a vector of perturbing elements is added to the “truth” orbit to 

simulate an initial estimate of the state vector. Finally, the “estimated” state vector and simulated 

data are passed to the LMF to find the “best estimate” of the orbit fitting the supplied data. The 

setup of the LMF and subroutines are set up similarly to many other programs using least squares 

algorithms. 

Three main routines are required when testing a least-squares filter: the least-squares filter, a data 

acquisition function, and a testing program. The least-squares filter, in this case, the LMF, is built to 

handle a variety of data fitting applications. Next, a test program is created to declare a vector of 

initial estimated parameters, system constants, and filter options. Additionally, the test program 

reads a file consisting of data and times the data was taken. Finally, the data acquisition function 

uses the vector of parameters and the vector of times corresponding to the times of real data 

measurement to simulate data. 
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4.3.1 Test Program 

In the algorithm test program, “Orbit100.m”, users can alter testing options before state vectors are 

produced. Satellites that are currently available for testing are NAVSTAR-77, MOLNIYA 3-50, and 

the ISS. The test program is broken up into seven sections. 

Satellite selection and orbit propagator options can be set in the first section of this program. The 

TLE set for the selected satellite downloads automatically when the program is started. While only 

the mentioned satellites are available for the user’s convenience, additional satellites can be tested 

with a text file containing the TLE of the desired satellite. Also, in the first section, the choice of 

which observation set to use can be made. 
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this paper is on using Doppler data (range rate) for orbit estimation, these additional cases will serve 

well for comparison. Methods used to calculate azimuth and elevation were covered in Section 4.1. 

Section two of the main program allows changing of options used in the LMF. The options 

included are: 

 bdx - Small perturbation value used for Jacobian calculation (ߜx in Eqn. 4.7) 

 

 lambda - The Marquardt scaling parameter ߣ 
 

 incr - A value to increase lambda 

 

 decr - A value to decrease lambda 

 

 maxIter - Determines maximum iteration count 

 

 eps1 - Gradient convergence criteria ߳1 

 eps2 - Parameter convergence criteria ߳2 

 eps3 - Root mean square convergence criteria ߳3 

 eps4 - state correction acceptance criteria ߳4 

 
In section three of “Orbit100.m”, the start time for the satellite pass is entered. Satellite tracking 

software, such as GP, or internet databases can be used to find satellite flyby times. Time is entered 

in Universal Time (UT). In section four of “Orbit100.m”, the user can change the position of the 

ground site. Currently, the simulated ground site shares the location of San Jose State University. 

Constants and coefficients are read into the program from exterior files in sections 5 and 6 of 

“Orbit100.m.” 

In sections 5 and 6 of “Orbit100.m,” files containing constants and coefficients used in the orbit 

generator are loaded. These files contain Earth Orientation Parameters (EOP), the GRACE gravity 

model (GGM03S), and NASA JPL Development Ephemerides (DE430). Finally, in section 7 of 

Orbit100.m, data is generated, and the “estimated” orbit is produced. 
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4.3.2 Orbit and Data Generator 

The orbit propagator used in this study was part of a package put together by Meysam Mahooti. The 

unaltered version of “High Precision Orbit Propagator” (HPOP) can be found on the MathWorks 

File Exchange. Mahooti’s HPOP was chosen for its ability to model the variety of forces that act on 

Earth-orbiting satellites. These forces are: 

 Gravity field of the earth 

 

 Gravity of the solar system planets 

 

 Drag effect 

 

 Solar radiation pressure 

 

 Solid Earth tides 

 

 Ocean tides 

 
The ordinary differential equation solver used in HPOP is the Radau IIa, which is derived by Hairer 

and Wanner [31]. Radau IIa is derived from implicit Runge-Kutta methods that offer step size 

control and continuous output. 

The programs “get_obs.m” and “get_data.m” are called to propagate the state vector x to times 

determined by step size and the number of observation sets. The “truth” state vector is propagated in 

“get_obs.m”, where azimuth, right ascension, and/or range rate data are calculated. White noise is 

added to this data to simulate data that may be picked up by ground site hardware. Similarly, 

“get_data.m”, used throughout the LMF, propagates the “estimated” orbit and records data at the 

times used for observations. As the LMF searches for state vectors with a better fit, “get_data.m” is 

used to calculate data in the generated orbits. 
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4.3.3 Least-Squares Filter 
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Let f = ࢉࢋ࢙࢜࢈ࡻ െݕݎݐ࢟� 

Calculate ܵܵࢌ = ݕݎݐݔԢࢌ 

Calculate ݔܵܵ) = ߚ െ�ܵܵݕݎݐݔ
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5. RESULTS AND ANALYSIS 

 

In this chapter, the Levenberg-Marquardt Damped Least-Squares algorithm, outlined in previous 

chapters, is tested for its ability to provide the “best estimate” for the state vector of an orbit at a 

given epoch. To generate the “truth” orbit of a satellite, the Two-Line Element set of the desired 

satellite is downloaded into a text file, then it is processed using an SGP4 propagator and the 

cartesian “truth” state vector is produced. With the state vector acquired, an ephemeris is generated, 

and simulated observations of range-rate, azimuth, and elevation can be calculated. In the various 

cases run in this chapter, different combinations of these data are studied. In testing of real data, 

range-rate would be calculated using the Doppler shift of the carrier signal from the satellite. For the 

simulated case, it is assumed that the Doppler data has already been processed, giving range rate at 

each respective point in the orbit. A simulated ground site is used as an observation point. The 

simulated ground site shares the latitude and longitude of San Jose State University: 

 .Next, the state vector of the “estimated” orbit is generated .ܹ 121.8811 ,ܰ 37.3352

 

To generate simulated observations, an initial “estimated” state vector is created by perturbing the 

initial “truth” state vector. This “estimated” state vector is propagated, and the desired parameters 

are calculated using methods described in the previous chapter. To this data, white, zero-mean, 

Gaussian noise is added. The standard deviation for the noise added to each parameter can be seen 

in Table 4.1. The standard deviation for azimuth and elevation are “realistic” for satellite tracking 
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Table 5.1 Gaussian Measurement Noise Standard Deviation 
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km. The larger orbit gives the NAVSTAR satellite an orbital period of about 12 hours. The largest 
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Table 5.2 Keplerian state vectors of test case satellites. 

 
 ISS NAVSTAR-77 MOLNIYA 3-50 

2 

h 
݇݉ 

( ) 
 ݏ

52029.77 102898.1 71305.23 

e 0.001259
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The “observation” parameters were chosen due to their observability. According to Folcik [29], 

typical observations used for satellite orbit estimation are made up of angular optical observations 

and radar observations. The angular optical observations consist of right ascension and declination 

measurements made against the background of stars. While radar observations also include two 

angle measurements, azimuth and elevation, they also include range and range-rate measurements. 

The present analysis assumes that for each case, direct determination of range-rate is not feasible. 

The number of observations used for each satellite varies based on the size of the orbit. 

While the smaller orbit of the ISS requires fewer data points (25 were used in the present analysis) 

to allow the LMF to converge, Hunter [17] advises using an increased number of observations for 

the larger orbits of NAVSTAR-77 and MOLNIYA 3-50 to better capture their curvature. An 

increased step size allows the full pass of the satellite to be captured without creating abundant data 

points to calculate. For the both the NAVASTAR and MOLNIYA satellites, 100 observations were 

simulated. The output from the LMF is indicative of how well the filter performed. While 

optimizing a program could entail limiting the amount of function calls, it is expected that running 

the LMF with increased step size and observation counts will take longer to converge than the more 

circular ISS case. For the ISS, a step size of 25 seconds was chosen. With the 25 sets of 

observations, this step size allowed the filter access to the full pass duration of 10.5 minutes. To 

cover the full pass durations, the NAVSTAR and MOLNIYA orbits were given step sizes of 252 

seconds and 360 seconds, respectively. 

The output of the LMF is a set of four vectors. These vectors are 

 

 Truth - the initial “truth” state vector retrieved from TLE of the satellite 

 

 Estimated - “estimated” initial state vector. In the case of this paper, this state vector was 

“estimated” by perturbing the “truth” vector. Each satellite initial state vector is perturbed by 
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As seen in Tables (5.4-5.6), the LMF performed remarkably well. Each of the estimated state 

vectors were correctly fitted to the noisy data. The data collected from the orbit of the propagated 

“estimated” state vector, as well as noisy data collected from the “truth” orbit can be found in 

Appendix A. 

 

5.1.2 Angles Only Case 

 

For the second set of cases, angles of azimuth and elevation (with added noise) will serve as the 

“observed” data. This case is included in the present analysis to determine if including range rate 

information has a significant impact on the performance of the LMF. Tables (5.7-5.9) show the 

results of using angles only with the LMF. 

 
 

Table 5.7 ISS Results from Azimuth & Elevation. 

 
 Truth Predicted Correction Final 

x (km) -6197.3 -6197.8 -0.5 -6197.3 

y (km) -1366.8 -1368.8 2.0 -1366.8 
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Table 5.9 MOLNIYA 3-50 Results from Azimuth & Elevation. 

 
 Truth Predicted Correction Final 

x (km) -19347.0 -19341.0 -6.0 -19347.0 

y (km) 1824.3 1822.3 2.0 1824.3 

z (km) 14893.2 14898.2 -5.0 14893.2 

 �ͳͲെ͵ -1.1150כሶ (km/s) -1.1151 -1.1121 -2.99ݔ

 �ͳͲെ͵ -1.6175כሶ (km/s) -1.6175 -1.6165 -0.99ݕ

 �ͳͲെ͵ 3.6997כሶ (km/s) 3.6997 3.6972 2.49ݖ

t = 2805.202 s 

 

 

 

 

5.1.1 Range Rate Only Case 

 

For the final set of cases, range rate ߩሶ data will be the only observations used for the LMF. The 

results of this case are seen in Tables (5.10-5.12). 

 

 

Table 5.4 ISS Results from ߩሶ only. 

 
 Truth Predicted Correction Final 

x (km) -6197.3 
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PV = [-4  -2.5 3  -1.610 כെ͵ 110 כെ͵ -2כ�ͳͲെ͵], 

 

 

the LMF was able to converge. 

 

 

Table 5.5 NAVSTAR-77 Results from ߩሶ only (using updated PV). 

 
 Truth Predicted Correction Final 

x (km) 14277.2 -14273.2 4.0 -14277.2 

y (km) 15437.6 -154351 2.5 -14437.3 

z (km) -16214.8 16216.8 -3.0 16214.8 

 �ͳͲെ͵ 3.1690כሶ (km/s) -3.1686 3.167 1.61ݔ
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NAVSTAR-77. Through the iterations, it was observed that each new change was rejected, and ߣ 

continued to grow until it hit a max at 10െ7. Potential changes were repeatedly rejected even as the 

potential corrections dwindled down to zero. It was believed that the initial guess may have been too 

far off for this case (as the literature suggests the filter relies on an estimate close to the solution), so 

the PV was decreased in an attempt to remedy the failure. Indeed, the decrease in PV allowed the 

filter to find the solution. Previous builds of the LMF ran into problems as well. 

The results found in this section are the outcome of a fourth generation build of the LMF. Previous 

iterations proved successful (see Appendix C for results) for the ISS, which converged, and 

NAVSTAR, which gained successful, albeit lacking, corrections, but it failed to properly correct the 

MOLNIYA cases. Additionally, even though the ISS and NAVSTAR cases were able to be 

corrected, there was still room for improvement to the solution, but additional observations only 

served to exacerbate the error in the final estimate. This failure was prominent in the MOLNIYA 

case as it was believed that adding data from an additional pass would fix the problem, but the 

added pass only increased computational cost with zero benefit to the solution. The latest build 

(used for the results in this chapter) allowed convergence of each of the satellite cases by making 

several modifications to the program structure. 

In previous LMF software designs created in this study, the least-squares algorithm and orbit 

generator were grouped into one program. While this design can work, as it did for the ISS and 

NAVSTAR cases, it became difficult to track variable usage. For example, one section of the 

program split a time of the format HH:MM:SS, where HH, MM, and SS are hours, minutes, and 

seconds, respectively. The hours, minutes, and seconds were saved to a time vector with variables 

{hr min sec}. When the output from the program was far from what was expected, it took many 

hours before the mistake was found. In this case, saving a number under the variable “min” caused 
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equations that were meant to find the minimum (using the min.m function) to output erroneous 

solutions. The use of “sec” as a variable also caused errors when calling external functions as 

MatLab uses “sec” to find the secant of an angle. Though MatLab typically spots these types of 

errors and notifies the user, in this case the only hint of the error was in the output of the program. 

This was one of many instances that urged the reformatting of the software. Thus, the LMF and 

orbit/data generator were built into separate functions, leaving the original file to serve as a testing 

function. Once this procedure was complete, each case was able to converge. 

As was expected, the ISS was able to converge much faster than the other two cases. This relatively 

quick convergence is the product of fewer necessary observations and smaller step sizes. Using this 

ideology, it was surprising to find the MOLNIYA cases converging about forty minutes faster 

(averaged) than the NAVSTAR in the range rate only and angles only cases. This may be due to the 

eccentricity of the Molinaya orbit. Future work will investigate this matter further. 

To understand the full capabilities of the LMF used in the paper, future work should involve the 

testing of real satellite data. While adding noise to simulated data gives a feel for what could be seen 

at a ground site, real observations would challenge the algorithm and discovering the trajectory of a 

real satellite with a least-squares algorithm would be all the more rewarding. 





63  

included in the analysis. The first additional case had data comprised of range rate, azimuth, and 

elevation. Because this data set had the most data type, poor resolution in the range rate only case 

could be quantified. The second added case used only azimuth and elevation angles. Should this 

case have outperformed the previous case and the range rate only case, an understanding of how the 

range rate impacted the results could be acquired. 

Throughout the building of the LMF software, many iterations of the filter were attempted and 

failed. Initial builds allowed convergence on the orbit of the ISS and at least some correction for 

NAVSTAR, but it diverged consistently with the Molinaya orbit. When the addition of data from a 

subsequent pass only made state vector estimates worse, the program was overhauled and netted 

positive results. In addition to reformatting the software, several additions were made to improve 

performance of the filter. 
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6.1 FUTURE WORK 
 

The successful outcome of this filter begs that it be used with real data. Future work should test the 

performance of the filter when given processed Doppler data. Initial testing should include data 

from satellites with known trajectories. If the filter proves successful, more difficult targets could be 

studied. Should it be desired, several modifications could still be made to the software. 

While the filter has seen successful testing with simulated data, the Orbit Propagator has not been 
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APPENDIX A. SIMULATED DATA 

 
ISS MEASUREMENTS FROM TRUTH ORBIT 

 

Least-squares orbit determination 

Measurements from “truth” orbit 
Date UTC Az(deg) El(deg) Range rate (km/s) 
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ISS MEASUREMENTS WITH ADDED NOISE 

Least-squares orbit determination 

Measurements with added noise 
Date UTC Az(deg) 
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NAVSTAR-77 MEASUREMENTS FROM TRUTH ORBIT 

 

Least-
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2019/05/12 21:08:34.000 131.744 32.465 0.064 

2019/05/12 21:12:46.000 130.072 32.584 0.041 

2019/05/12 21:16:58.000 128.387 32.648 0.018 

2019/05/12 21:21:10.000 126.690 32.658 -0.004 

2019/05/12 21:25:22.000 124.986 32.614 -0.027 

2019/05/12 21:29:34.000 123.277 32.518 -0.049 

2019/05/12 21:33:46.000 121.566 32.369 -0.070 

2019/05/12 21:37:58.000 119.856 32.171 -0.091 

2019/05/12 21:42:10.000 118.149 31.922 -0.112 

2019/05/12 21:46:22.000 116.448 31.625 -0.132 

2019/05/12 21:50:34.000 114.753 31.282 -0.152 

2019/05/12 21:54:46.000 113.069 30.893 -0.172 

2019/05/12 21:58:58.000 111.395 30.460 -0.190 

2019/05/12 22:03:10.000 109.733 29.986 -0.208 

2019/05/12 22:07:22.000
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2019/05/13 00:25:58.000 58.091 4.369 -0.247 

2019/05/13 00:30:10.000 56.523 3.830 -0.229 

2019/05/13 00:34:22.000 54.947 3.333 -0.209 

2019/05/13 00:38:34.000 53.363 2.879 -
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NAVSTAR MEASUREMENTS WITH ADDED NOISE 

 

Least-squares orbit determination 

Measurements with added noise 
Date UTC Az(deg) El(deg) Range rate (km/s) 

2019/05/12 18:16:22.000 169.060 -11.407 0.716 

2019/05/12 18:20:34.000 168.896 -9.676 0.715 

2019/05/12 18:24:46.000 168.700 -7.957 0.714 

2019/05/12 18:28:58.000 168.482 -6.268 0.712 

2019/05/12 18:33:10.000 168.231 -4.608 0.708 

2019/05/12 18:37:22.000 167.937 -2.980 0.703 

2019/05/12 18:41:34.000 167.633 -1.360 0.698 

2019/05/12 18:45:46.000 167.271 0.214 0.691 

2019/05/12 18:49:58.000 166.908 1.771 0.683 

2019/05/12 18:54:10.000 166.479 3.291 0.674 

2019/05/12 18:58:22.000 166.030 4.800 0.665 

2019/05/12 19:02:34.000 165.544 6.269 0.654 

2019/05/12 19:06:46.000 165.018 7.714 0.643 

2019/05/12 19:10:58.000 164.460 9.114 0.630 

2019/05/12 19:15:10.000 163.856 10.499 0.617 

2019/05/12 19:19:22.000 163.215 11.847 0.603 

2019/05/12 19:23:34.000 162.536 13.171 0.588 

2019/05/12 19:27:46.000 161.802 14.445 
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2019/05/12 21:12:46.000 130.075 32.579 0.041 

2019/05/12 21:16:58.000 128.389 32.642 0.018 

2019/05/12 21:21:10.000 126.692 32.660 -0.004 

2019/05/12 21:25:22.000 124.991 32.620 -0.027 

2019/05/12 21:29:34.000 123.281 32.512 -0.048 

2019/05/12 21:33:46.000 121.571 32.364 -0.070 

2019/05/12 21:37:58.000 119.851 32.185 -0.091 

2019/05/12 21:42:10.000 118.148 31.920 -0.112 

2019/05/12 21:46:22.000 116.450 31.621 -0.132 

2019/05/12 21:50:34.000 114.756 31.281 -0.152 

2019/05/12 21:54:46.000 113.068 30.890 -0.172 

2019/05/12 21:58:58.000 111.395 30.455 -0.190 

2019/05/12 22:03:10.000 109.738 29.983 -0.208 

2019/05/12 22:07:22.000 108.082 29.467 -0.226 

2019/05/12 22:11:34.000 106.448 28.928 -0.243 

2019/05/12 22:15:46.000 104.833 28.321 -0.259 

2019/05/12 22:19:58.000 103.221 27.708 -0.274 

2019/05/12 22:24:10.000 101.630 27.054 -0.288 

2019/05/12 22:28:22.000 100.056 26.377 -0.302 

2019/05/12 22:32:34.000 98.496 25.654 -0.315 

2019/05/12 22:36:46.000 96.953 24.917 -0.327 

2019/05/12 22:40:58.000 95.418 24.170 -0.338 

2019/05/12 22:45:10.000 93.897 23.386 -0.347 

2019/05/12 22:49:22.000 92.388 22.580 -0.356 

2019/05/12 22:53:34.000 90.894 21.756 -0.364 

2019/05/12 22:57:46.000 89.412 20.935 -0.371 

2019/05/12 23:01:58.000 87.919 20.089 -0.377 

2019/05/12 23:06:10.000 86.435 19.228 -0.382 

2019/05/12 23:10:22.000 84.979 18.370 -0.385 

2019/05/12 23:14:34.000 83.502 17.511 -0.388 

2019/05/12 23:18:46.000 82.038 16.645 -0.389 

2019/05/12 23:22:58.000 80.583 15.772 -0.389 

2019/05/12 23:27:10.000 79.125 14.903 -0.388 

2019/05/12 23:31:22.000 77.657 14.050 -0.386 

2019/05/12 23:35:34.000 76.197 13.193 -0.382 

2019/05/12 23:39:46.000 74.735 12.347 -0.377 

2019/05/12 23:43:58.000 73.255 11.512 -0.371 

2019/05/12 23:48:10.000 71.780 10.681 -0.364 

2019/05/12 23:52:22.000 70.291 9.881 -0.356 

2019/05/12 23:56:34.000 68.802 9.108 -0.346 

2019/05/13 00:00:46.000 67.303 8.336 -0.335 

2019/05/13 00:04:58.000 65.785 7.609 -0.324 

2019/05/13 00:09:10.000 64.268 6.891 -0.310 

2019/05/13 00:13:22.000 62.737 6.212 -0.296 

2019/05/13 00:17:34.000 61.203 5.560 -0.281 

2019/05/13 00:21:46.000 59.646 4.947 -0.264 
2019/05/13 00:25:58.000 58.092 4.369 -0.247 
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2019/05/13 00:30:10.000 56.527 3.843 -0.229 

2019/05/13 00:34:22.000 54.953 3.327 -0.209 

2019/05/13 00:38:34.000 53.361 2.870 -0.189 

2019/05/13 00:42:46.000 51.768 2.478 -0.168 
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MOLNIYA 3-50 MEASUREMENTS FROM TRUTH ORBIT 

 

Least-squares orbit determination 

Measurements 
Date UTC Az(deg) El(deg) Range rate (km/s) 

2019/05/13 03:08:26.000 
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2019/05/13 07:20:26.000 20.062 58.062 0.129 

2019/05/13 07:26:26.000 20.077 58.072 0.077 

2019/05/13 07:32:26.000 20.110 58.096 0.026 

2019/05/13 07:38:26.000 20.159 58.134 -0.026 

2019/05/13 07:44:26.000 20.226 58.187 -0.078 

2019/05/13 07:50:26.000 20.310 58.255 -0.130 

2019/05/13 07:56:26.000 20.410 58.337 -0.182 

2019/05/13 08:02:26.000 20.528 58.433 -0.234 

2019/05/13 08:08:26.000 20.661 58.545 -0.286 

2019/05/13 08:14:26.000 20.812 58.672 -0.338 

2019/05/13 08:20:26.000 20.980 58.814 -0.391 

2019/05/13 08:26:26.000 21.165 58.972 -0.443 

2019/05/13 08:32:26.000 21.368 59.145 -0.496 

2019/05/13 08:38:26.000 21.589 59.334 -0.550 

2019/05/13 08:44:26.000 21.830 59.539 -0.603 

2019/05/13 08:50:26.000 22.090 59.760 -0.657 

2019/05/13 08:56:26.000 22.372 59.998 -0.712 

2019/05/13 09:02:26.000 22.676 60.253 -0.767 

2019/05/13 09:08:26.000 23.003 60.525 -0.822 

2019/05/13 09:14:26.000 23.357 60.815 -0.878 

2019/05/13 09:20:26.000 23.737 61.122 -0.934 

2019/05/13 09:26:26.000 24.147 61.448 -0.991 

2019/05/13 09:32:26.000 24.590 61.793 -1.049 

2019/05/13 09:38:26.000 25.069 62.156 -1.108 

2019/05/13 09:44:26.000 25.588 62.540 -1.167 

2019/05/13 09:50:26.000 26.151 62.943 -1.227 

2019/05/13 09:56:26.000 26.763 63.366 -1.288 

2019/05/13 10:02:26.000 27.431 63.811 -1.349 

2019/05/13 10:08:26.000 28.161 64.276 -1.412 

2019/05/13 10:14:26.000 28.963 64.764 -1.476 

2019/05/13 10:20:26.000 29.848 65.273 -1.541 

2019/05/13 10:26:26.000 30.826 65.804 -1.607 

2019/05/13 10:32:26.000 31.915 -
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2019/05/13 12:02:26.000 87.480 73.134 -2.843 

2019/05/13 12:08:26.000 95.617 72.266 -2.919 

2019/05/13 12:14:26.000 103.715 70.846 -2.988 

2019/05/13 12:20:26.000 111.410 68.764 -3.043 

2019/05/13 12:26:26.000 118.423 65.903 -3.076 

2019/05/13 12:32:26.000 124.598 62.122 -3.076 

2019/05/13 12:38:26.000 129.894 57.236 -3.020 

2019/05/13 12:44:26.000 134.343 50.999 -2.879 

2019/05/13 12:50:26.000 138.018 43.094 -2.604 

2019/05/13 12:56:26.000 140.997 33.164 -2.130 
2019/05/13 13:02:26.000 143.350 20.932 -1.389 
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MOLNIYA 3-50 MEASUREMENTS WITH ADDED NOISE 

 

Least-squares orbit determination 

Measurements 
Date UTC Az(deg) El(deg) Range rate (km/s) 

2019/05/13 03:08:26.000 76.298 70.308 2.919 

2019/05/13 03:14:26.000 69.778
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2019/05/13 07:20:26.000 20.075 58.059 0.121 

2019/05/13 07:26:26.000 20.064 58.068 0.074 

2019/05/13 07:32:26.000 20.104 58.106 0.031 

2019/05/13 
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2019/05/13 12:02:26.000 87.479 73.127 -2.841 

2019/05/13 12:08:26.000 95.622 72.262 -2.933 

2019/05/13 12:14:26.000 103.718 70.862 -2.985 

2019/05/13 12:20:26.000 111.411 68.766 -3.038 

2019/05/13 12:26:26.000 118.433 65.911 -3.077 

2019/05/13 12:32:26.000 124.598 62.123 -3.080 

2019/05/13 12:38:26.000 129.899 57.237 -3.013 

2019/05/13 12:44:26.000 134.342 51.007 -2.888 

2019/05/13 12:50:26.000 138.027 43.086 -2.609 

2019/05/13 

138.027

2019/05/13
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MOLNIYA 3-50 MEASUREMENTS FROM ESTIMATED ORBIT 

 

Least-squares orbit determination 

Measurements 
Date UTC Az(deg) El(deg) Range rate (km/s) 

2019/05/13 03:08:26.000 76.226 70.299 2.915 

2019/05/13 03:14:26.000 69.714
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2019/05/13 07:20:26.000 20.143 58.004 0.121 

2019/05/13 07:26:26.000 20.164 58.013 0.068 

2019/05/13 07:32:26.000 20.203 58.036 0.016 

2019/05/13 
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APPENDIX B. SIMULATION RESULTS 

 

 
ISS RANGE RATE ONLY 



87  

 
 

ISS ANGLES ONLY 
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ISS RANGE RATE AND ANGLES 
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NAVSTAR RANGE RATE ONLY 
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NAVSTAR ANGLES ONLY 
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NAVSTAR RANGE RATE AND ANGLES 
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MOLNIYA RANGE RATE ONLY 
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MOLNIYA ANGLES ONLY 
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MOLNIYA RANGE RATE AND ANGLES 
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APPENDIX C. RESULTS FROM PREVIOUS BUILD OF LMF 

 

 

 

ISS using 10 observations of range rate 
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ISS using 10 observations using range rate, Azimuth and elevation 
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ISS using 20 observations with range rate only 
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ISS using 20 observations of range rate, azimuth and elevation 
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ISS using 40 observations using range rate only 
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ISS using 40 observations of range rate, azimuth and elevation 
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NAVSTAR-77 using 10 observations of range rate, azimuth and elevation 
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NAVSTAR-77 using 20 observations of range rate only 
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NAVSTAR-77 using 40 observations of range rate only 
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MOLNIYA 3-50 using 10 observations of range rate 
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MOLNIYA -3-50 using 10 observation of range rate, azimuth and elevation 
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MOLNIYA -3-50 using 20 observation of range rate 
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MOLNIYA -3-50 using 20 observation of range rate, azimuth and elevation 
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MOLNIYA -3-50 using 40 observation of range rate 
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MOLNIYA -3-50 using 40 observation of range rate, azimuth and elevation 
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% Range rate standard deviation = 5; 

% Noise standard deviation [Az = 0.005*pi/180; 
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3) LOAD SATELLITE DATA AND CALCULATE INITIAL ESTIMATE STATE VECTOR 

There are currently three satellites to choose from. Should the user desire studying an 

alternative satellite, enter the name of the satellite as done below. Note that each name 

has 24 characters including spaces. Consult Celestrak for lists of satellites and TLEs. 

From here, it is possible to calculate the position of the satellite using Two-Line Element 

(TLE) data. TLE data from all active satellites is read from Celestrak and stored in the file 

TLE_DATA.txt. This text file is scanned for the relevant satellite, then the TLE of that 

satellite is stored in the file new_tle.txt. The state vector is calculated using sgp4.m. 

In the TLE, epoch is represented in days (with fraction of day) since Jan. 1 of the current 

year. To get time since epoch for an event, first days since Jan. 1 of the event is 

calculated, then epoch is subtracted from that value. The function sgp4.m is used to extract 

the state vector from the TLE at the event time. 

options.incr = 10; % Factor for increasing lambda 
options.decr = 0.4; % Factor for decreasing lambda 
options.maxIter= 29; % Maximum amount of iterations 
options.eps1 = 1e-4; % Gradient convergence Criteria 
options.eps2 = 1e-8; % Parameter convergence criteria 
options.eps3 = 1e-6; % RMS criterion 
options.eps4 = 1e-20; % Acceptence criteria 
if choice == 1 || choice == 3 

options.wts = 1/sig1^2; 
elseif choice == 2 

options.wts = []; 
for i = 1:n_obs 

options.wts = [options.wts;1/sig1^2;1/sig1^2;1/sig2^2]; 
end 

end 

% Starting point for Marq. 
Jacobian) 
options.lambda = 0.0001; 
parameter 

'; 

'; 

http://www.celestrak.com/NORAD/elements/active.txt
http://www.celestrak.com/NORAD/elements/active.txt
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4) SIMULATE GROUND STATION 

Constructing the position of the ground site can be done using Eqn. (5.86) in the Curtis 

book. For the purposes of this experiment, the latitude, longitude, and altitude of San Jose 

State University are used for this construction. 

5) READ IN EARTH GRAVITY FIELD COEFFICIENTS AND MODEL PARAMETERS 
 

sat.minute1 = passTime1(5); 
sat.second1 = passTime1(6); 
 
sat.UT = sat.hour1 + sat.minute1./60 + sat.second1./(60*60); 



http://celestrak.com/SpaceData/eop20130101.txt
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Evaluate model using Y0 % 

end 
for i = 1:length(t) 

Obs(i,:) = get_obs(Y0_ref,t(i),sat,1); 
end 
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, 

which is plugged into the equation: 
 

 

 

. 

 
This equation can now be solved for  

Orbit determination: 

 

The Collector function is used to extract the Jacobian J, vector of residuals f, and the sum 
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 λ 
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(Y0(i)-Y0_apr(i)),Y0(i)/1e3); 
fprintf('\n'); 

end 

toc 
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Data(1)*180/pi,Data(2)*180/pi); 

end 

end 

 

end % for i = 1:n_obs 
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LEVENBERG-MARQUARDT FILTER 

 

function Y0 = marquardt(func,Y0,Obs,step,options,c) 

% func = 'get_obs' 

global iterat 

lx = numel(Y0); % number of states 

[nPnt,nP] = size(Obs); % number of observations or 

observations sets 

nParam = nP; % number of observables per set 

Y0_prev = zeros(lx,1); % previous parameter set 

data_prev = zeros(nPnt*nParam,1); % previous data set 

SSx = 1e-3/eps; % initialize sum of squares  

SSx_prev = 1e-3/eps; % initialize previous sum of squares 

J = zeros(nPnt,lx); 
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for i = 1:length(t) 

data_init(i,:) = feval(func,Y0,t(i),c,0); % Evaluate model 

using Y0 

end 

 

% data_init = []; 

% for i = 1:length(t) 

% y_init = feval(func,Y0,Obs(i,1),t(i),c); % initialize residual 

vector from estimated state 

% data_init = [data_init;y_init]; 

% end 

 

if (var(wts) == 0) 

weight = abs(wts)*ones(nPnt*nParam,1); 

disp('Uniform weights used in analysis') 

else 

end

 



127  

for i = 1:nPnt 
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% end 

% y_try = y_try'; 

f_res = Obs_vec - y_try; % residual error using Ytry 

if ~all(isfinite(f_res)) 

stop = 1; 

break 

end 

 

 

SSx_try = f_res' * ( f_res.*weight); % sum of squares error 

criteria 

 

%beta = SSx - SSx_try 

beta = (SSx - SSx_try) / ( q' * (lambda * q + g) ); 

if beta > 0%options.eps4 % Ytry is accepted 

dSSx = SSx - SSx_prev; 

SSx_prev = SSx; 

Y0_prev = Y0; 

data_prev = dataVec; 

Y0 = Ytry(:); 

 

 

[A,g,SSx,dataVec,J] = 

get_Ag(func,t,Y0_prev,data_prev,dSSx,J,Y0,Obs,weight,bdx,c); 
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if 
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end 

J = [J;Jj]; % collect 

Jacobian elements for ti to tf 

end 

 

end 

 

 

function J = Broyden_J(Y0_prev,data_prev,J,Y0,data) 

q = Y0 - Y0_prev; 

J = J + (data - data_prev - J*q)*q' / (q'*q); % Broyden rank-1 

update 

 

end 

 

function [ A,g,SSx,dataVec,J] = 

get_Ag(func,t,Y0_prev,data_prev,dSSx,J,Y0,Obs,weight,bdx,c) 

 

 

[m,n] = size(Obs); % get dimensions of observations 

matrix 

lx = length(Y0); % number of elements in state 

vector 

 

yObs = []; 

for i = 1:m 

for j = 1:n 

yObs = [yObs;Obs(i,j)]; % vectorized data set from obs 

matrix 

end 

end 

 

 

for i = 1:length(t) 

data(i,:) = feval(func,Y0,t(i),c,0); % Evaluate model using 

Y0 

dataVec(n*i-
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difference 

else 

J = Broyden_J(Y0_prev,data_prev,J,Y0,dataVec); % rank-1 

update 

end 

 

f_r = yObs - dataVec;  % vector of residuals 

SSx = f_r'* ( f_r.*weight ); % SSx error criteria 

A = J'* ( J .* ( weight * ones(1,lx) ) ); 

g = J' * ( weight .* f_r ); 

 

end %get_Ag 

 

%% 

 

end % marquardt 


