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Abstract 

Autonomous vehicles such as interplanetary drones are an expanding topic of interest. 

Autonomous vehicles such as the Ingenuity Helicopter are making history and inspiring a new 

era of space exploration. Traditional autonomous vehicles such as the Mars Exploration Rovers 

used Visual Odometry to know their own position. However, visual Odometry is very 

computationally intensive producing motion estimates every few minutes. Interplanetary drones 

need Visual Odometry systems that produce motion estimates at a much faster rate. This paper 

will develop a Visual Odometry system for an autonomous drone to extrapolate the performance 

of these systems. These estimates will be able to help predict the functionality of similar systems 

on Ingenuity and other interplanetary drones in development. 
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EKF Extended Kalman Filter -------- 

EOM Equations of Motion -------- 

FAA  Federal Aviation Administration -------- 

FPGA Field-Programmable Gate Array -------- 

IMU Inertial Measurement Unit -------- 

FPS Frames Per Second  
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systems to accurately measure the 3D motion that a singular camera setup cannot. VIO will give 

position and velocity data that has much less drift then the IMU alone. 

1.2 Literature Review 

One the first times VO was done was back in 1976 by PhD students at Stanford. Hans 

Moravec and Donald Gennery developed a visual system to track the movement of an electric 

vehicle. The system worked by sending the camera images wirelessly to a server which did the 

VO calculations. There are 4 steps to their VO system. First an interest operator determines areas 

in the image that will be easily identifiable from image to image to track. Then the binary search 

correlator attempts to find the features from the interest operator. Matches of the features in 

consecutive frames are sent to the high-resolution correlator to improve upon the matches 

accuracy. Finally, the camera solver uses the improved matches from the high-resolution 

correlator to calculate the camera position in both frames to find how far the vehicle has travelled 

(Moravec, 1976). 

1.2.1 Improvement and Applications of VO 

Jiawei Mo and Junaed Sattar point out a downfall of monocular VO, such as that 

mentioned above. Monocular VO can track the movement in only 2 directions. It lacks the depth 

perception necessary for the tracking of full 3D motion. To gain movement information in the 

third dimension, they proposed a stereoscopic approach. They use one camera for traditional VO 

while the other allows the system to fuse the third dimensions motion with that of the monocular 

VO. In previous work the fusion of monocular VO with a second camera is done by stereoscopic 

matching. Stereoscopic matching is computationally expensive however, so Mo and Sattar 

replaced stereoscopic matching with a scale optimizer which performs calculations on a single 
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pixel location instead of the region around the projected pixel. This allows scale optimization to 

be more computationally efficient. The scale improvement saw a decrease in computational time 

versus the stereoscopic matching implementation during testing with the KITTI computer vision 

dataset



 
 

15 
 

transformations in the VO algorithm does not add up as quickly with lower framerates. However, 

Howard notes that there is a lower bound for this decrease in framerate to improve accuracy due 

to the travel of the features from frame to frame. The second test was conducted on DARPA’s 

LAGR vehicle. The LAGR vehicle is a platform to assess the slip during ground traversing. VO 

is used to check the wheel odometry where a discrepante to it0W* n
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camera moves. During testing versus IMU coupling that is fused with a standalone VO system, 

Usenko et al.’s VIO system is superior. With a dataset collected by a drone, The VIO system 

outperformed the fused VIO, particularly when there was significant motion blur. This held true 

for both rotation and translation over a course of 40 meters, as well as over time on a course of 

over 1140 meters. Another test on a dataset taken from a car was also done to test the VIO 

systems qualitative results, as it was able to successfully track the movement of the car in a 

challenging optical environment (Usenko, 2016). 

1.2.1.1 Drone Use Cases 
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was observed that the translation error averaged 0.021 meters with a peak under 0.05 meters, 

while the orientation error averaged 2.183 degrees with a peak below 5 degrees. The second 

flight showed similar results, however there was a large spike in the orientation error due to an 

error in the ground truth capture. Two additional flights were conducted outside, which 

compared the VIO position data to GPS data taken during the flight. Both flights showed drift in 

the VIO data compared to the GPS data. However, the GPS data was not reliable in the second 

outdoor flight and aid by the VIO system gave better results than the GPS alone. Overall, 

Dornellas et al. quantitatively showed that VIO could be used on a drone to fill in the gaps of 

poor GPS signal (Dornellas, 2019).  

1.2.1.2 Interplanetary VO 

Visual Odometry does have some precedence in interplanetary use as well. Both MER 

utilized VO for portions of the autonomous driving that was instructing. Wheel encoders were 

used successfully on level rigid surfaces but were found to exceed the 10% per 100 meters drift 

required. A VO system had been developed for use on the MER but had not gone through the 
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As well, the long computation time necessitated that the human driver decides what to image for 

the VO calculation, so that the feature detector has enough data to track. Due to these challenges 

VO was only used in very specific situations consisting of short steep slippery terrain. 

Regardless of these limitations, VO proved to be an effective tool for the MER to safely and 

accurately traverse the Martian landscape (Maimone, 2007). 

Building upon the success of VO on the MER, VO was implemented on the MSL 

Curiosity rover as well. Curiosity saw a large improvement on its VO computation time over the 

MER. This was not only due to a newer generation CPU, but the introduction of a FPGA as a 

vision co-processor. During tests in Curiosity’s development, Howard et al. used a Xylinx Virtex 

5 FPGA to assess its performance over MER’s VO implementation. The results of the tests 

showed a vast improvement over MER’s implementation. The stereoscopic calculations took 

about 24 to 30 seconds on the RAD6000 CPU found on the MER compared to 0.005 seconds on 

the FPGA accelerated setup. The performance gains continued to be stable as increasing the 

resolution of the images from a width of 256 to 1024 pixels only saw the FPGA take 0.082 

seconds to do the stereoscopic calculation. Additionally, a test of the whole VO system was 

done. The MER analog completed the visual odometry calculations in about 160 seconds while 

the FPGA as a co-processor took 0.016. However, only the feature detection and matching were 

run on the FPGA and following calculations would have to be done on a separate CPU (Howard, 

2012). 

The Mars 2020 Perseverance rover see’s additional improvements over Curiosity’s VO 

hardware and programming. Perseverance adds an additional RAD750 CPU and Vertex 5 FPGA. 

As well as this, the calculations have been parallelized. This results in the VO that took 65 

seconds on Curiosity to take a total of 9.8 seconds on Perseverance. This increase in VO 
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calculation, among other penalizations, increased Perseverance speed to about 100 meters per 
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Figure 1: Ingenuity Engineering Model Design 

It has a complex avionics system that ensures safe flight for the helicopter. Its primary 

processor is a Qualcomm SnapdragonTM 801 processor at 2.26 GHz with 2 GB of RAM and 32 

GB of Flash memory. It has 2 identical Texas Instruments Hercules TMS570LC43x automotive 

processors at 300 MHz with their own 512 KB of RAM and 4 MB of flash memory. These are 

redundant processors that receive and process identical. These perform flight control functions 

that are critical to the operation of the drone. During flight one of the two will be the primary 

processor while the other is waiting to be hot-swapped in case a fault causes the primary to 

restart.  

To perform the mission critical tasks, Ingenuity utilizes a military grade radiation 

hardened ProASIC3L FPGA from MicroSemi. It performs all the I/O to the sensors, actuators, 
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including the MER, which used the radiation hardened RAD6600 (Cheng, 2006). The RAD 

series of CPUs is the premiere line of radiation hardened CPUs. Currently the most capable RAD 

series CPU is the RAD750. Even though it is the cutting edge for space processors it is an order 

of magnitude behind cutting edge of contemporary processors in terms of processor speed.  

GPUs are a processor that is starting to gain popularity for heavy computational tasks. 

Generally its individual clock speed is slower than a CPU, however, they have many more cores 

than CPUs. This large amount of cores is the main draw for GPUs. This allows them to 

parallelize many small processes, and run them concurrently instead of serially like with CPUs. 

GPUs are generally more difficult to program, but the performance benefits justify the extra 

effort. Unlike the RAD series of CPUs, there are no commercially available radiation hardened 

GPUs. This could become a problem for interplanetary use as they will be much more 

susceptible to faults.   

FPGAs are a unique type of processor that can have its hardware reprogrammed to 

perform a specific task at the hardware level. Like CPUs, FPGAs als
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Harris corner detector. For the edge detector, the FPGA ran the algorithm 1.92 – 0.93 times 

faster than the GPU and 27.3 – 23.3 times faster than the CPU, as the image size increased from 

512x512 to 3936x3936 pixels. Additionally, the energy consumption of the FPGA was 154 – 167 

times more energy efficient than the GPU, and 94 – 102 times more energy efficient than the 

CPU, as the image size increased from 512x512 to 3936x3936 pixels. For the corner detector, the 

FPGA ran the algorithm 2.02 – 0.96 times faster than the GPU and 17.4 – 20.9 times faster than 

the CPU, as the image size increased from 512x512 to 3936x3936 pixels. Additionally, the 

energy consumption of the FPGA was 154 – 166 times more energy efficient than the GPU, and 

94 – 101 times more energy efficient than the CPU, as the image size increased from 512x512 to 

3936x3936 pixels. However, none of these processors tested were radiation hardened so the 

comparison isn’t a direct comparison for an interplanetary drone use case. That said, Ingenuity 

has a non-radiation hardened CPUs and was able to fly multiple successful flights. 

1.3 Proposal 

The goal of this project is to extrapolate the performance of Earth based VIO systems to 

an interplanetary drone. A VIO system will be developed on a more conventional embedded 

system rather than with an FPGA. Additionally, this project does not look to improve on existing 

VIO but to implement an existing VIO system for benchmarking. Both performance and 

efficiency of the implemented VIO will be conducted, then based on a variety of factors, will be 

expanded to make an approximation of the performance that can be expected on an 

interplanetary drone.  

There are three success criteria for this project as follows. 

1. Complete Success Criteria: 
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a. A VIO system will be implemented and flown on the Theia drone and in 

the virtual simulator. Tests will be performed to assess the execution time 

of the VIO system on the actual drone during flight. Groundtruth from the 

simulator will be used to assess the accuracy of the algorithm. From these 

tests a feasibility study will extrapolate these results to hardware that is 

likely to appear on other interplanetary drones. 

2. Partial Success Criteria: 

a. A VIO system will be implemented and tested in the virtual simulator. 

Tests will be performed to assess the execution time of the VIO system on 

the actual drone during flight. Groundtruth from the simulator will be used 

to assess the accuracy of the algorithm. From these tests a feasibility study 

will extrapolate these results to hardware that is likely to appear on other 

interplanetary drones. 

3. Minimum Success Criteria: 

a. A VO system will be implemented and tested with a stereoscopic camera 

setup. Tests will be performed to assess the execution time of the VO 

system. A feasibility study will extrapolate these results to hardware that is 

likely to appear on other interplanetary drones.  

1.4 Methodology 

There are two major parts to the completion of this project. The first part is to implement 

a VIO system that will allow a testing drone to achieve autonomous flight without receiving state 
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data from a GPS. The second part is to take the results from the first part to approximate 

expected VIO results. 

Part I: Validation of VIO on an Autonomous Drone 

1. Specify test drone embedded flight computer. 

2. Identify VO/VIO algorithms that are best suited for autonomous flight. 

3. Implement the identified VO/VIO algorithm in C++. Add IMU fusion in the case the 

identified algorithm is VO only. 

4. Deploy the C++ VIO code to the test drone/simulator. 

5. Test the VIO under manual control to compare with GPS data in flight, or 

groundtruth data from the virtual simulator.  

6. Make adjustments to the VIO system if it does not achieve a reasonable error. 

7.  Test the VIO on the test drone for a predetermined autonomous flight. 

Part II: Extrapolate Autonomous VIO Performance to Interplanetary Performance 

1. Determine hardware that will likely be used for interplanetary drones. 

2. Compare performance criteria of selected hardware with the hardware used on the test 

drone. 

3. Investigate performance tradeoffs between different processor architectures. 

4. Use the performance tradeoffs study to scale test drone VIO performance to an 

interplanetary drone.  

5. Discuss the viability of VIO as a real time system on interplanetary drones 
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2.3 Supporting Drone Systems 
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𝑠 𝑝 = 𝐴[𝑅|𝑡]𝑃𝑤     (3.1) 
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projective transformation scaling 𝑠. However, finding 𝑠 can be difficult so another method to 

find the image scale must be used. 

 

Figure 2 – Pinhole Camera Model Visualization 

 

3.1.1 Extension to Stereoscopic Calibration 

Zhang (Zhang, 2009) extended his model for camera calibration to stereoscopic cameras to 

support other projects he was working on at the time. In his stereo model the second camera 

would be denoted with a ′. The transform between cameras is (𝑅𝑠, 𝑡𝑠) such that (𝑅′, 𝑡′) = (𝑅, 𝑡) ∙
(𝑅𝑠, 𝑡𝑠). This relationship is shown more precisely in equations 3.11 and 3.12. 

  𝑅′ = 𝑅𝑅𝑠       (3.11) 

  𝑡′ =  𝑅𝑡𝑠 + 𝑡       (3.12) 

To find (𝑅𝑠, 𝑡𝑠) the cost function in equation 3.13 is minimized. 
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∑ ∑ [𝛿𝑖𝑗‖𝑝𝑖𝑗 − 𝑚̆(𝐴, 𝑘1, 𝑘2, 𝑅𝑖, 𝑡𝑖, 𝑃𝑗)‖
2

+ 𝛿′𝑖𝑗‖𝑝′𝑖𝑗 −𝑚
𝑗=1

𝑛
𝑖=1

𝑚̆(𝐴′, 𝑘′1, 𝑘′2, 𝑅′𝑖 , 𝑡′𝑖 , 𝑃𝑗)‖
2

]      (3.13) 

In equation 3.13 𝛿𝑖𝑗 and 𝛿′𝑖𝑗 are Booleans denoting if the point 𝑗 is visible to the camera.  

 

3.2 Distortion Model 

The distortion model used in OpenCV is a combined version of the Brown-Conrady 

model (Brown, 1966) and the Fitzgibbon division model (Fitzgibbon, 2001). The combined 

model includes the radial and tangential distortion terms as well as the thin prism model as seen 

in Wang (Wang, 1992). The full OpenCV model is as follows 

[
𝑢
𝑣

] =  [
𝑓𝑥𝑥′′ + 𝑐𝑥

𝑓𝑦𝑦′′ + 𝑐𝑦
]      (3.14) 

Where  

[
𝑥′′
𝑦′′

] =  [
𝑥′

1+𝑘1𝑟2+𝑘2𝑟4+𝑘3𝑟6

1+𝑘4𝑟2+𝑘5𝑟4+𝑘6𝑟6
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 [
𝑥′′
𝑦′′

] =  [
𝑥′(1 + 𝑘1𝑟2 + 𝑘2𝑟4+𝑘3𝑟�:眧鈰
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After some simplification we get  

𝐷 =
𝐵𝑓

𝑥𝑂−𝑥𝑂′       (3.19) 

The disparity in the images is given by 𝑥𝑂 − 𝑥𝑂′. However, since depth is tied to one pixel, the 

stereoscopic model projects the depth to only one of the camera views. Additionally, This model 

assumes that the images from the two camera are rectified so that there is no vertical translation 

or any rotations between the images.  

 

 

 

Figure 4 – Stereoscopic Camera Model Visualization 
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3.4 Stereoscopic Correspondence 

The stereoscopic correspondence algorithm used in OpenCV is based on Heiko 

Hirschmuller
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Where 𝐿𝑟(𝑝, 𝑑) is the cost along each path calculated by where 𝑟is the direction of the 

pixel and 𝑃1and 𝑃2are constant penalties: 

 𝐿𝑟(𝑝, 𝑑) = 𝐶(𝑝, 𝑑) + 𝑚𝑖𝑛(𝐿𝑟(𝑝 − 𝑟, 𝑑), 𝐿𝑟(𝑝 − 𝑟, 𝑑
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between frames is found using the Levenberg-Marquardt least-squares algorithm. The Error 

equation is given as 

𝜀 = ∑ (𝑗𝑎 − 𝜌∆𝜔𝑏)2 + (𝑗𝑏 − 𝜌∆−1𝜔𝑎)2
(𝐹𝑎,𝐹𝑏)∈𝑄   (4.1) 

Where  

   𝜀 is the reprojection error 

   𝐹 is a feature in the image 

   𝑄 is the clique of the matched feature inliers 

   𝑗 is the homogenous image coordinates 

   𝜔 is the homogenous world coordinates 

   𝜌 is the camera projection matrix 

   ∆ is the transformation between image a and b.  

If there are enough points in the clique, the co-linearity is close to one, and the reprojection error 

𝜀 is below a certain threshold the transformation ∆ is valid. The transformation ∆ is calculating 

the egomotion of the stereoscopic camera, which in turn measures the movement of the drone.  

4 Results 
Overall, successful trajectory estimates were not able to be achieved. There are bugs in the 
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that it can be used by the RGBD Odometry object. It is possible that the assignment of the depth 
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  Desktop based AMD Ryzen 9 3950X @ 3.5GHz. 

The devices included are both desktop level and embedded system level. Additionally, the 2 

Jetson devices were run distributed in a HITL mode with another device handling the supporting 

systems, and as a standalone device running the VO as well as the communication server. 

  

Figure 5 – Average Execution Time of the Tested Devices. There are 2 data points at 

1.43GHz and 2.26GHz for standalone and HITL. 
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