San José State University Computer Science Department CS 286: Advanced Topics In Computer Science, Sec-01 Next Generation Sequencing and Genome Assembly, Spring 2020

Course Information

Instructor: Leonard P. Wesley

Department: Computer Science College of Science, San Jose State University. Spring Semester, 2020

Course and Contact Information

Instructor:	Leonard Wesley
Office Location:	MH 212
Telephone:	408.924.5287
Email:	Leonard.Wesley@sjsu.edu
Office Hours:	Thursdays 2:00PM – 4:00PM, Except on 2/27, 3/9, 3/30 when office hours will be from 12noon to 1:30PM
Class Days/Time:	Tuesdays and Thursdays 6:00PM – 7:15PM
Classroom:	MH 222
Prerequisites:	Completion of a molecular cell biology course, and be comfortable running UNIX, Windows, or Mac based application software. Completion of an advanced Python course or CS22B will be helpful but not critical.

Course Description

Next generation sequencing (NGS) is a high-throughput method used to determine a portion of the nucleotide sequence of a biological organism's genome. NGS techniques utilize DNA and RNA sequencing technologies that are capable of processing multiple genomic sequences in parallel. This course will provide the student with a thorough understanding of the genomic landscape, description of various sequence generation methodologies and technologies (e.g., Illumina, Ion Torrent, Pac Bio, and Oxford MinIon). The course will also provide an understanding of how to perform basic quality control of

next generation sequencing data, how to use next generation sequencing data to perform *de novo* and comparative assemblies of selected genomes. Students will become familiar with genome annotation techniques, services, and cloud services for bioinformatic analysis of next generation sequencing data.

Learning Outcomes

Upon successful completion of this course, students will:

- 1. **SLO-1: Intro & Background:** Be familiar with the genomic and NGS technology landscape.
- 2. **SLO-2:** Sequencing Technologies: Know the theory, methodology, and practice of traditional and next generation sequencing technologies.
- 3. **SLO-3: Genomics and Pharmacogenomics:** Know the relationship between genomics and pharmacogenomics, understand the role of bioinformatics and survey the potential applications of next generation sequencing to modern medicine.
- 4. **SLO-4: Genome Assembly:** Understand the principles and techniques of genome assembly and gene annotation.
- 5. **SLO-5: Staying Current:** Be familiar with the resources required to stay current with progress in the rapidly changing field of next generation sequencing.

Each SLO above corresponds to a learning module that is described in the course calendar below. That is, there are five (5) learning modules that cover the SLOs described above.

Required Texts

Next-Generation DNA Sequencing Informatics, Second Edition

Edited by Stuart M. Brown, *New York University School of Medicine,* Publisher Cold Spring Harbor Laboratory Press, 2015, ISBN 978-1-621821-23-6

NOTE: The field is advancing so rapidly, that the above required textbook will be supplemented with more recent publications as appropriate.

Other Optional Reading Material

A Primer of Genome Science, Greg Gibson, Spencer V. Muse, Publisher Sinauer Associates, 2009, Edition #3, ISBN-10: 0878932364 | ISBN-13: 978-0878932368

Introduction to Computational Biology: Maps, Sequences and Genomes, Michael S. Waterman, CRC Press. (A statistical oriented view of bioinformatics)

Classroom Protocol

Instruction will begin at or within several minutes of the official published start time for the course. Please make sure that cell phones, beepers, and texting devices are turned off during the entire scheduled class time. Excessive audible discussions with fellow students is prohibited so that others are not disturbed. If any subject matter is not understood, please do not hesitate to ask for clarification. If an extended response is necessary to remove doubts, then a request to follow up outside of scheduled classroom instruction time might be made.

Quizzes and Exams

There will be three quizzes, one midterm and a final exam all of which will count toward the final grad as specified in the "Grades" section below. During quizzes and exams, communication with other individuals via any means is strictly prohibited without the express permission of the instructor. Violations will be met with the full impact of SJSU's academic integrity policy and procedures.

Projects

Several life science or genomics-based projects will be described near the start of the course. Projects will involve applying the skills and knowledge learned in the course to the project. Teams of 2-3 students will be formed to work on a selected project topic. Teams will be required to submit a project proposal before starting on a project, and submit a project report along with working code at the end of the course. Individual student scores on a project will be determined by the content and quality of the contribution of each student toward the project. The score on the course project and project presentation will count toward the final grad (percentage wise) as specified in the "Grades" section below.

Reading, Homework, Programming, In-Class Exercises, Participation Assignments

Graded reading, homework, programming, and class participation and brief course feedback assignments will be given almost weekly, and will count toward the final grade. There will be 4 In-class Exercise sessions. These will typically involve forming teams of 2-3 students that work on assigned exercises in the classroom. They provide an opportunity to get started on homework programming assignments that are to be submitted on a designated due date. Participation is mandatory, and scores will count toward final grade.

Computational Resources

Students are required to make sure that they have access to sufficient UNIX, Windows, or Mac based computational resources (e.g., computers and software) to carryout assignments in the course. An attempt to offer the course in a classroom with sufficient computation resources will be made by the department to support classroom instruction and demonstrations. However, students should be prepared to bring their portable laptops to class.

4	2/13	2/18	#2 Sequencing Technologies	 2/13: NGS guest lecture by Gary Schroth, Illumina 2/18: Ion Torrent, Oxford Nanopore Pacific Biosciences (Single molecule SMRT) Emulsion PCR, 454 pyro sequencing 	Learning Module #2 Week 4
5	2/20	2/25	#2 Sequencing Technologies	 2/20: Quiz 1 (~35 mins): Covers Topics Week 1 thru Week 4 2/25: Sequence Alignment: From Dot Plots to BWA 	Learning Module #2 Week 5
6	2/27	3/3	#2 Sequencing Technologies	 2/27: SOLiD & Complete Genomics sequencing-by- ligation 3/3: EM sequencing, FRET sequencing 	Learning Module #2 Week 6
7	3/5	3/10	#2 Sequencing Technologies	 3/5: In-Class Exercise 2 Topics Covered 9/10 – 9/26 3/10: Midterm (Full period): Covers Topics from Week 1 thru Week 6 	Learning Module #2 Week 7
8	3/12	3/17	#3 Genomics and pharmacoge nomics	 3/12: Genome Browsers Sequencing Quality Scores 3/17: Genome-Wide Association Studies Metagenomics 	Learning Module #3 Week 8

3/19:

3/24:

- Assays & Bayesian Statistics
- Next Gen Sequence Analysis and Quality Control Assessment
- #3 Genomics
 - and
- pharmacoge nomics

Quiz 2 (~35 mins): Covers Topics Week 7 thru Week 8

- Next Gen Sequence Analysis and Quality Control Assessment

9

3/19

3/24

13	4/16	4/21	#4 Genome Assembly	 4/16: In-Class Exercise 4 (Work on Team Projects, Q&A) 4/21: The overlap approach De Bruijn graph approach 	Module #4 Week 13
14	4/23	4/28	#4 Genome Assembly	 4/23: Comparison of assembly algorithms Summary of genome assembly 4/28: Correction of Assembly errors Evaluation of assembly methods 	Module #4 Week 14
15	4/30	5/5	#5 Staying Current	 4/30: Genome Assembly Of Sample DNA 5/5: Genome Assembly Of Sample DNA (cont.) Resources required to stay current with progress in the rapidly changing field of next generation sequencing. 	Module #5 Week 15
16	5/7	No Class	#5 Staying Current	 5/7: Preparation for Final exam. Q&A 	Module #5 Week 16
Final Project Code and Project Report Due To Canvas May 20, 2020 By 11:59PM			ort Due To Canvas 59PM		
				Final Exam Project Submission In Place (Of Final Exam

SCHEDULE FOOTNOTES: NONE AS OF Spring 2020

Grades *		
WRITTEN HOMEWORK (4 at 10 points each)		40 pts
QUIZZES (3 at 40pts each)		120 pts
MIDTERM		100 pts
IN-CLASS EXERCISES (4 at 50pts each)		200 pts
WEEKLY COURSE FEEDBACK (12 at 5pts each)		60 pts
PROGRAMMING ASSIGNMENTS (2 @ 40pts each)		80 pts
FINAL PROJECT REPORT & CODE		400 pts
Total Course Points	=	1,000 pts Total

* The total points for each category might change depending on the number of project teams and assignments. The instructor reserves the right to adjust, with sufficient advanced notice, the above point distribution by ± 5 pts. Such adjustments might be based on the difficulty or simplicity of assignments or quizzes or exams.

Grading Policy

Grading Percentage Breakdown (NOTE: Ranges might change if point totals change)

Grading Percentage Breakdown				
Percent of Total Points	Points		Letter Grade	
96.66%	\geq	967	A+	
93.33%	\geq	933	А	
90.00%	\geq	900	Ar	
86.66%	\geq	867	B+	
83.33%	\geq	833	В	
80.00%	\geq	800	Br	
76.66%	\geq	767	C+	
73.33%	\geq	733	С	
70.00%	\geq	700	Cr	
66.66%	\geq	667	D+	
63.33%	\geq	633	D	
60.00%	\geq	600	Dr	
59.99%	<	600	F	

HOW TO CALCULATE/ESTIMATE YOUR GRADE

If students would like to calculate their numeric grade percentage, the formula is as follows:

Numeric CS 286 Grade Percentage =

_____ 100%

There is no guarantee that grades will be curved. If so, it will be done at the end of the semester. The instructor is already aware that graduate students need to maintain an overall GPA of B or better. Just because a student NEEDS a particular grade doesn't mean that the instructor will automatically GIVE the student that grade. Students must EARN a passing grade based on submitted and evaluated course work.

Extra Credit Options, If Available

There are no extra credit assignments in this course except for completing designated "Advanced" assignments. How1Eu11,9.56yssignmenit2 assignmentle are ga7yg(stusc.ere are no exora C to follow if and when questions or concerns about a class arises. See <u>University Policy</u> <u>S90–5</u> at http://www.sjsu.edu/senate/docs/S90-5.pdf. More detailed information on a variety of related topics is available in the SJSU catalog, at http://info.sjsu.edu/web-