methods for mesh generation and analysis of boundary layers and incompressible viscous flows are studied. Application using a commercial CFD packa**gerfs**rmed.

Course Goals and Student Learning Objectives

By the end of this course, students should be able to

- Describe the governing equations of incompressible flows their mathematical properties.
- Describe the setup of the finite volume and finitied ence methods and their limitations.
- Formulate a mesh that results in accurate analysis of a theuidalystem and demonstrate its accuracy.
- Describe methods of modeling turbulence and choose an appropriate model for a given thermalfluid system.
- Apply appropriate boundary conditions for a given therfhaid application.
- Demonstrate a systematic application of the principles **desd**ribe the imitations of techniques for the simulation of turbulent and transitional flows and thus be able to apply these in a critical manner to practical applications.
- Demonstrate their acquired skills in applying commercial CFD software packages to practical engineering applications.

Required Texts/Readings

Textbook

"An Introduction to Computational Fluid Dynamics: The Finite Volume Method (2nd Edition)" by H.K. Versteeg and W. Malalasekera, Longman Scientific & Technical. (or similar)

Dropping and Adding

Students are responsible for understanding theies and procedures about add/drgpade forgivenessetc. Refer to the current semester'stcTd [()-2>Tj /TT0 1 S0hnies for t407(H 242 <</MC

to compare homework answers or solution methods with your friends after you have completed your problems.

Campus Policy in Compliance with the American Disabilities Act

If you need course adaptations or accommodations because of a disability, or if you need to make special arrangements in case the building **breuet**/acuated, please make an appointment with me as soon as possible, or see me during office hours. Presidential Directive 97-03 requires that students with disabilities requesting accommodations must register with the <u>Disability Resource Cent</u>@DRC) at http://www.drc.sjsu.edu/ to establish a record of their disability.

Student Technology Resources

Computer labs for student use are available in the Academic Success Center locate^d on the 1 floor of Clark Hall and on the ^{2d} floor of the Student Union. Additional computer labre available in ENG 213/215. Computers are also available in the Martin Luther King Library. The software used in this class, FLUENT, is available in ENG 213/215. It is also available for download. Instructions will be provided in class.

ME 297 Schedule Spring 2016, Section 1

Date	Торіс	2nd ed. reading	HW due
27-Jan	Introduction to CFD, Numerical Methods, Flow Regimes to be Considered,	Chp. 1	
1-Feb*	Conservation Equations and Introduction to ANSYS Fluent	Chp. 2	
3-Feb	Fluent Modeling 1, Introduction to Model Setup Requirements (Take Detailed Notes!)	-	¥
8-Feb**	Finite Volume/Difference (PDE Equation Types) and Analytic Flat Plate Flow Modelling	Chp. 2	¥
10-Feb	Fluent Modeling 2, Flat Plate Flow Analysis (Analytic, Fluent vs. Tutorial)		
15-Feb	Finite Volume/Difference (PDE Equations), Internal Flow Analysis & Analytic Equations	Chp. 2	¥
17-Feb	Fluent Modeling 3, Internal Flow Analysis		¥
22-Feb	Implementation of Boundary Conditions and Initial Conditions	Chp. 9	¥
24-Feb	Fluent Modeling 4, Natural Convection Problem, JEDEC Test Board		
29-Feb	Meshing, Cartesian, Hexa Unstructured, Hexa Dominant, Viscid and Inviscid Flows	Chp. 11	¥
2-Mar	Fluent Modeling 5, Cylindrical and Cuboids, Steady/Unsteady, Viscid/ Inviscid Flows		
7-Mar	Solver Settings (k - ϵ model and Upwind Model) and Post Processing in Detail	Chp. 3	
9-Mar	Fluent Modeling 6, Sudden Pipe Expansion		
14-Mar	Turbulence Modeling, LES	Chp. 3	¥
16-Mar	Fluent Modeling 7, Turbulent Pipe Flow vs. Jet Speed vs. Cooling (0 vs. 2 eqn models)		
21-Mar	Midterm Review and Fluent Best Practices for Minimizing Errors		
23-Mar	Midterm Exam 1		
28-Mar	Spring Recess No Class		
30-Mar	Spring Recess No Class		
4-Apr	Moving B.C. Problems		¥
6-Apr	Fluent Modeling 8, 2-D Rotary Blade Analysis Problem	Chp. 4	
11-Apr	ANSYS Lecturer or Visiting Lecturer		
13-Apr	Fluent Modeling 8, 2-D Rotary Blade Analysis Problem Contd / Project Work Day	Chp. 3	¥
18-Apr	Multiphase Flow Analysis	Handouts	
20-Apr	Fluent Modeling 9: Multiphase Flow Analysis, VOF Analysis, (Inkjets, Fuel Injectors)		¥

255% (-)THight & 27M (6)]72(p0)]714105640090 (4)5% E600008 Tw/ (1209)92658 DC p96658td Td [(F)2(I)-4(uent)]TJ () Tj 0.008 Tw [()-4(i)-3(ng 9)]TJ