VR DVHLWK HU F etin in ho

San José State University **Department of Mechanical Engineering** ME 154 Mechanical Engineering Design, Section 01, Fall 2021

Course and Contact Information

Class Days and Time: Mondays and Wednesdays 2:15 PM to 3:55 PM

Classroom: Predominantly online (link in Canvas), in-person sessions in ENG???

41697, 4 units **Registration Code:**

ME 20, MatE 25, ME 101, CE 112, all with C- or better **Prerequisites: Corequisite:** Tech/ME 41 (either completed previously or co-enrolled)

Instructor: Sang-Joon (John) Lee **Email:** sang-joon.lee@sjsu.edu

Telephone: 408-924-7167

Office Location: Online only in Fall 2021 (link posted in Canvas)

Office Hours: Tuesdays and Thursdays 10:30-11:30 (link posted in Canvas)

Cdurse Format tand t pl mpp els seC-p This chars Gsperelder Zindathley Continue, with synchronous class meetings at the scheduled class times, supplemented Resign support of project activities. The class heavily requires use of Zoom video conferencing e Canvas learning management system (LMS)

https://sisi

- 7. Determine the magnitude and location of the maximum stress (principal stresses, maximum shear stress and von Mises stress) on a component.
- 8. Design and analyze short and long columns.
- 9. Design and analyze thin and thick walled cylinders under pressure and to select proper interference fits for press or shrink fits.
- 10. Design and analyze ductile and brittle machine components under static loads using appropriate failure criterion.
- 11. Estimate the value of stress concentration factor.
- 12. Design and analyze machine components under cyclic loads to guard against fatigue failure.
- 13. Design bolted joints in tension and shear.
- 14. Work as a team **W**s4

Grading Information

Course Schedule

Vj ku'uej gf wng'ku'c vgpvcvkxg rncp. 'twdlgev'vq''ej cpi g y kj 'twrf cvgu'vq''dg''eqo o wpkecvgf 'kp''encuu''qt ''pqvklkecvkqp xkc''Ecpxcu0

Dates	Topics	Related Chapters
8/23, 8/25	Course organization, linkages, joints, degrees of freedom, common planar mechanisms, mechanism classification, transmission angle, mechanical advantage, toggle positions	DoM* Ch 2, DoM Ch 3
8/30, 9/1	Graphical synthesis: motion generation mechanisms (two and three positions), adding a dyad to a mechanism.	DoM Ch 3
9/8	*Pq"ercuu'o ggskpi "qp"; 18. 'kp"qdugtxcpeg"qhNcdqt"Fc{+ Vectors in complex polar notation, closed loop vector equations, position analysis	DoM Ch 4
9/13, 9/15	Analytical linkage synthesis Velocity analysis	DoM Ch 5, DoM Ch 6
9/20, 9/22	Acceleration analysis	DoM Ch 7
9/27, 9/29	Mechanism kinematics review and practice 1st Midterm Exam (launches Wednesday)	DoM Ch 2-7
10/4, 10/6	Forces on mechanisms, self-consistent free-body diagram notation Matrix solution method for linear equations	DoM Ch 11
10/11, 10/13	Review of stress and strain, principal stresses Review of combined stresses: bending, torsion. Column design	MD** Ch 4
10/18, 10/20	Failure theories for static loads: maximum shear stress theory, the distortion-energy theory for ductile materials, modified Coulomb-Mohr theory for brittle materials	MD Ch 5
10/25, 10/27	Stress concentrations, pressurized cylinders, interference fits Materials selection in design	
11/1, 11/3	Stress analysis review and practice 2nd Midterm Exam (launches Wednesday)	MD Ch 2, MD Ch 4
11/8, 11/10	Failure theory for cyclic loads, high cycle fatigue, S-N curve Effect of mean stress on fatigue life	MD Ch 6
11/15, 11/17	Bolted joint design: thread standards, failure modes Bolt joint stiffness	MD Ch 6
11/22, 11/24	Bolt preload and joint failure *Pq'encuu'o ggvkpi 'qp'33146='eco rwu'pqp/kpuntwevkqpcnfc{+	MD Ch 15
11/29, 12/1	Design Project presentations	
12/6	Semester review and practice	

^{*} Design of Machinery textbook ** Machine Design textbook

All stu**b**ss n n**s**