San Jose State University Department of Mechanical Engineering ME 192 Robotics and Manufacturing Systems Fall 2021

Lecture Instructor Dr. Winney Du, 408-924-3866; <u>winney.du@sjsu.edu</u>; Office: E310F

Online Office Hours MW: 12:50-13:20 PM (E310F); MW: 17:45 – 18:15 PM

Instructor Lin Jiang, Email: <u>lin.jiang@sjsu.edu</u>

Office Hours M: 4:00-5:00 PM; W: 12:00-1:00 PM or by email appointment (Location: E192 or Zoom)

Course Code & Schedule

ME192 Section 4 (Seminar, by Dr. Winncy Du) 50109

- Describe the dynamic equation of a robot in a state-space form
- Control an industrial robot both manually and automatically (through a computer program)
- Design a robot's trajectory with the desired velocity, acceleration, and via points.
- Write a code using Matlab, ACE, and V+ programming tools to control and simulate an industry robot.
- Know how to use a virtual lab to control robots.

<u>Late Policy</u>: Unless otherwise specified for a particular assignment, work that is submitted late will be accepted with reduced credit accordingly:

Homework

- 12 hours late -10%
- 24 hours late -25%
- 36 hours late: -50%
- 37~48 hours late: -100%

Exceptions:

- Midterm & Final Exam
 - 1 ~ 5 minutes late: -10%
 - 6 ~ 10 minutes late: -25%
 - 11~15 minutes late: -50%
 - Over 15 minutes late: -100%

Tentative Schedule for Seminar Section

WEEK #	TOPICS
Week #1	

Lab quizzes (2) - 5% weight

- Robot arm kinematics and manipulation.
- Gripper offset and camera offset. Robot vision processing.

Term project (1) - 15% weight

- 4-week duration following 2 week planning period.
- Team initiated projects with instructor assistance
- 3-person teams. The students form teams.

Demonstration of robotic tools and applications

- To introduce various robotic equipment and application software, not covered in the lab exercises.
- To provide tips for term project ideas and use of special tools.

Lab Exercise – General Description

Lab 1: Introduction to Robots

Online:	Onsite:
 Industrial Robot types and configurations Robot applications Software interface to control Robots: MATLAB, V+, etc. 	 Robot coordinate systems (World-, Joint-, and tool-coordinates) Robot's controller, driver, amplifiers Robot control using a teaching pedant

Lab 2: Robot's Forward Kinematics and Programming using ACE

 Online: Robot Programming Software and Emulation Adept ACE programming environment V+ learning Writing a simple program to move a robot on emulation. Understand the different coordination systems in the emulation program. 	 Onsite: Setting up a coordinate system to each joint of a robot Measure a robot's parameters (link length, twist angle, offset, or joint angle) Establish a Denavit-Hartenberg table for the given robot Derive a 4x4 transformation matrix for each joint Find the robot's forward kinematics using excel kinematics model or MATLAB model
--	--

Lab 3: Robot Motion Control Using a computer

<mark>Online</mark>		Onsite	
 with the gripped Calculation Calculation order desire Input 	a robot's pick-and-place program he position indexing and the er offset late the transformation needed in to place a robot's end-effecter in a d position and orientation the transformation into the amming code		Write and run the V+ program on ACE, and transfer program file to robots. Debug and Troubleshoot the V+ program Run the pick and place motion with the robots.

• Demonstrate (using emulation) the robot is placed and orientated in the desired position and direction with the transformation code	
--	--

Lab 4: Robotic Control with Digital I/O (**onsite**)

- Use the robot's controller's digital output ports to turn on indications
- Design a circuit (or use a pre-designed circuit) integrated with the robot controller
- Control the robots with external sensors via digital input & output ports Such as:
 - Read three different inputs from toggle switches.
 - Direct the robot to a distinct location depending on button pressed.
 - o Indicate location by turning on appropriate indicator lamp. R4.Destar T6.nl .30.6 (9 (gi.7 13 (g.4)

x Desigx

ME 192 Lab Schedule

		ME192-02 Monday		ME192-05	Wednesday	Contents
Wk	Dates	Group A	Group B	Group A	Group B	
1	8/23		Lab in	troduction		Tour the lab, introduce lab policy, syllabus and etc.
2	8/30	Lab 1 <mark>online</mark>	Lab 1 onsite	Lab 1 <mark>online</mark>	Lab 1 onsite	Download ACE & Excel model. Understand Joint framing, Power up procedure. ManjETC