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A full ight-envelope simulation model of the Calspan Variable Stability Learjet-25 was
developed from ight data. The model is based on a stitched model architecture, which falls
into the class of quasi-Linear-Parameter-Varying models, and was developed using a series
of discrete linear point models and trim data. Point models were identi�ed from ight data
at �ve di�erent ight and loading conditions. A scaling method was used and validated
to convert all identi�ed point models to the same loading con�guration. The quasi-linear
aerodynamics from the models were then combined with trim data and the full nonlinear
equations of motion to develop the stitched model. Through validation with ight data,
the model was shown to accurately represent the aircraft dynamics within the normal ight
envelope and be able to estimate the e�ects of weight and center of gravity variations. The
paper provides a brief background of model stitching, lists the steps required to develop a
stitched model from ight data, and then demonstrates how the steps are applied to the
Learjet.

Nomenclature

0 Subscript denoting trim condition
� Angle of attack [rad or deg]
�



! Frequency [rad/sec]
� and � Roll and pitch attitudes [rad or deg]
��� Vector of scheduling parameters
AAA, BBB , CCC, DDD State-space matrices
WWW Vector of states that are not scheduling parameters
XXX , UUU, YYY Vectors of states, inputs, and outputs
ZZZ Vector of states that are scheduling parameters
� Time delay [sec]
a Acceleration [ft/sec2]
c Mean aerodynamic chord
F Stick force [lbs]
J Frequency response �t cost
JRMS Time domain RMS error cost
L Lift
L, M , N Roll, pitch, and yaw moment derivatives
n Load factor [g]
p, q, r Perturbation roll, pitch, and yaw rates [rad/sec or deg/sec]
t Time [sec]
U, V , W Total x-, y-, and z-body axis velocity [ft/sec]
u, v, w



were each own at a unique loading con�guration [weight, center of gravity (CG), and inertia] were scaled to
a common loading con�guration. This was especially important for the Learjet, since the aircraft has large
fuel tanks on the tips of its wings which signi�cantly change its roll and yaw moments of inertia, and hence
the lateral/directional dynamics. Finally, the models and trim data were \stitched" 2 together into the full
ight-envelope model. This stitching technique refers to combining together individual linear models and
trim data for discrete ight conditions with the full nonlinear equations of motion to produce a continuous,
full �ght-envelope simulation model. This type of model is in the class of quasi-linear-parameter-varying
(qLPV) models,7 which is discussed in more detail in SectionII.

A brief description of model stitching is presented in SectionII. Section III provides a description of
the aircraft and ight test. Then, identi�cation results of one individual point model will be presented in
Section IV, followed by a method to baseline a point model from one loading con�guration to another in
SectionV. Section VI described a method to repurpose longitudinal speed stability data to trim data for use
in the stitched model. Finally, the results of the stitched model will be presented in SectionVII, including
comparison with validation ight data in Section VIII .

II. Model Stitching Overview

A continuous, full-envelope simulation model of the LJ-25 was developed to represent the aircraft dynam-
ics accurately over its entire ight and loading envelopes. This was accomplished using the model stitching
technique,2, 3 which refers to the process of combining a collection of linear state-space models at various
�ght conditions with trim data into a full-envelope simulation model. At its core, the stitched model is
comprised of a quasi-linear-parameter-varying model (qLPV), with distinctive features speci�c to aircraft
and rotorcraft applications. This section will provide some background on qLPV models and detail how the
stitched model is an extension of the qLPV framework with aircraft-speci�c features.

A. Quasi-Linear-Parameter-Varying Model

Linear-parameter-varying (LPV) models or systems are, in general, representations of nonlinear systems:

_XXX (t) = f
�
XXX (t);UUU(t)

�
(1)

YYY(t) = h
�
XXX (t);UUU(t)

�
(2)

where:

XXX , UUU, and YYY are the total states, inputs, and outputs of the system, respectively, and
f and h are nonlinear functions.

A LPV model is a linearized state-space representation of the nonlinear system in Equations1 and 2, but



Note that the number of point models and trim data points do no have to be equal. In fact, it will be shown
that it is desirable to have trim data at a �ner grid of scheduling parameters values than point models.

If the scheduling parameter vector ��� contains any states of the system (elements ofXXX in Equation 3),
then the system is quasi-LPV (qLPV), and is said to be \stitched" 1 in those states. As such, a qLPV system
is stitched in elements of��� that are states of the system andscheduledin elements of��� that are not states
of the system.

For a qLPV model then, the state vector XXX can be separated into states that are stitching parameters
(ZZZ � ���) and states that are not ( WWW 6� ���):

XXX =
h
ZZZ WWW

i T
(5)

Then, Equation 3 can be rewritten as (dropping the notation for the dependence on time for brevity):
"

_ZZZ
_WWW

#

=

"
AAA11(���) AAA12(���)
AAA21(���) AAA22(���)

# "
ZZZ � ZZZ 0(���)

WWW � WWW 0(���)

#

+

"
BBB 1(���)
BBB 2(���)

#
h
UUU � UUU0(���)

i
(6)

SinceZZZ is a stitching parameter, ZZZ 0(���) = ZZZ at all times, and Equation 6 becomes:
"

_ZZZ
_WWW

#

=

"
AAA11(���) AAA12(���)
AAA21(���) AAA22(���)

# "
000

WWW � WWW 0(���)

#

+

"
BBB 1(���)
BBB 2(���)

#
h
UUU � UUU0(���)

i
(7)

The contributions of AAA11 and AAA21 to _ZZZ appear to be eliminated from the qLPV model of Equation 7.
However, these contributions can be shown to be preserved implicitly through the trim state and input
gradients. Starting with the de�nition of AAA11 as the gradient of _ZZZ with respect to ZZZ about some trim point
��� 0:

AAA11 =
@_ZZZ
@ZZZ

�
�
�
�
��� 0

(8)

Next, taking the partial derivative of _ZZZ from Equation 7 with respect to ZZZ results in:

@_ZZZ
@ZZZ

�
�
�
�
��� 0

=
@AAA12(���)

@ZZZ

�
�
�
�
��� 0

[WWW j��� 0 � W0W0W0(��� 0)] + AAA12(��� 0)

"
@WWW
@ZZZ

�
�
�
�
��� 0

�
@WWW 0(���)

@ZZZ

�
�
�
�
��� 0

#

+
@BBB 1(���)

@ZZZ

�
�
�
�
��� 0

[UUUj��� 0 � U0U0U0(��� 0)] + BBB 1(��� 0)

"
@UUU
@ZZZ

�
�
�
�
��� 0

�
@UUU0(���)

@ZZZ

�
�
�
�
��� 0

#

(9)

Several terms can be canceled out from Equation9. First, since ��� 0 is a trim condition, WWW j��� 0 = WWW 0(��� 0)
and UUUj��� 0 = UUU0(��� 0). Furthermore, WWW and UUU are independent ofZZZ , so @WWW=@ZZZ = @UUU=@ZZZ = 0. Combining
Equations 8 and 9 allows us to calculate an e�ective qLPV AAA11:

AAA11qLPV = � AAA12(��� 0)

"
@WWW 0(���)



B. Stitched Model

The stitched model applies qLPV modeling speci�cally to aircraft and rotorcraft with several main distinc-
tions or features relevant to these applications:

1) The �rst distinction is that the primary scheduling parameter in the stitched model is the total
instantaneous x-body axis velocity stateU (note the lack of bold, di�erentiating U, the x-body axis velocity
state from UUU, the vector of inputs). The total instantaneous x-body axis velocity state U can be considered
to be the true airspeed for typical angle of attack ranges. The stitched model, therefore, is a qLPV model
that is stitched in U. For aircraft applications then, Equation 10 above reduces to:

X u qLPV = �X w (U0)
@W
@U

�
�
�
�
U0

+ gcos � 0
@�
@U

�
�
�
�
U0

� X � e (U0)
@�e
@U

�
�
�
�
U0

� X � T (U0)
@�T
@U

�
�
�
�
U0

(12)

Zu qLPV = �Z w (U0)
@W
@U

�
�
�
�
U0

+ gsin � 0
@�
@U

�
�
�
�
U0

� Z � e (U0)
@�e
@U

�
�
�
�
U0

� Z � T (U0)
@�T
@U

�
�
�
�
U0

(13)

M u qLPV = �M w (U0)
@W
@U

�
�
�
�
U0

� M � e (U0)
@�e
@U

�
�
�
�
U0

� M � T (U0)
@�T
@U

�
�
�
�
U0

(14)

Again, this shows the importance of having a �ne grid of trim data around each point model to accurately
Generally, the stitched model scheduling parameter vector can include additional state-elements (stitching

elements,� XXX ), such as y-body axis velocityV in the case of rotorcraft applications,2 and exogenous-elements
(scheduling parameters,6� XXX ), such as ap deection � f in the case of �xed-wing applications or nacelle angle
in the case of tilt-rotor applications.8 When state-space matrices and trim data are available at multiple
altitudes, then altitude may be be included as a scheduling parameter.

2) The second distinction of the stitched model is that when state-space matrices and trim data are only
available at a single altitude, the stitched model can apply air density ratio scaling. This allows the stitched
model to account for variations in trim and dynamics with altitude, without explicitly including altitude
in the schedule parameter vector. This was the case for the LJ-25 application presented herein, where the
model is stitched with x-body axis velocity state U and scheduled with ap deection � f , only:

��� =
h
U � f

i T
(15)

Therefore, for the LJ-25 application, the state trim values (XXX 0 in Equation 3) and control input trim values
(UUU0 in Equation 3) are implemented as lookup tables with respect toU and � f .

Note that a limitation of air density ratio scaling is in preserving Mach e�ects with altitude, since it does
not capture the changing Mach number for a given airspeed with changing altitude. Therefore, when Mach
e�ects are important, it is advisable to include altitude as a scheduling parameter by having point models
at multiple altitudes.

3) The third distinction of the stitched model is the recognition that the general state-space form of
Equation 3 describes aircraft-speci�c forces and moments, which can be broken up into their respective
aerodynamic, gravity, and Coriolis components:

_XXX = AAAaero (���)
�
XXX � XXX 0(���)

�
+ AAAgrav (���)

�
XXX � XXX 0(���)

�

+ AAACor (���)
�
XXX � XXX 0(���)

�
+ BBB aero (���)

�
UUU � UUU0(���)

�
(16)

In the stitched model, only the aerodynamic components (AAAaero andBBB aero in Equation 16) are implemented as
lookup tables with respect to ���. The gravity component and Coriolis terms ( AAAgrav and AAACor in Equation 16)
are removed from the linear point models and included instead in their nonlinear form through the full
nonlinear equations of motion implemented in the stitched model.

4) The fourth distinction of the stitched model is its ability to scale the forces and moments for changes in
mass, moments of inertia, and CG location through the equations of motion, thus allowing for simulation of
changes in those parameters without explicitly including them as scheduling parameters. This is an important
aspect of the stitched model for use with ight data, which will be discussed further in SectionII.C.3.

5) The �nal distinction of the stitched model is the ability to simulate takeo� and landing through the
inclusion of simple landing gear and spoilers models, an engine out condition, and di�erent levels of wind and
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turbulence. The resulting model is accurate for typical aircraft ight dynamics for the entire maneuvering
ight regime, except for extreme conditions (e.g., stall or spin).

A block diagram schematic of the stitched model is shown in Figure1 (duplicated from Ref. 3). Note that
in this schematic, ��� = U, and the model is only stitched with x-body axis velocity U. To summarize, model
stitching is accomplished by implementing lookup tables of the aircraft state trim values, control input trim
values, and stability and control derivatives based on point models and trim data. Trim states and controls
are used to determine perturbation states [� xxx =

�
XXX � XXX 0(U)

�
] and controls [� uuu =

�
UUU � UUU0(U)

�
], which

in turn are multiplied by the stability and control derivatives and mass matrix ( MAMAMA� uuu and MBMBMB � xxx) to
determine perturbation aerodynamic and control forces and moments. Note that the stability and control
derivatives are determined based on a low-pass �lteredUf , to ensure that the derivative values remain
constant for short-term motion and retain the accurate dynamic response at the discrete point models.
Trim values are determined based on instantaneousU. The aerodynamic trim forces and moments are then
summed to the perturbation values to yield the total aerodynamic forces and moments acting on the aircraft
in body axes. In addition, the linearized Coriolis terms (e.g., W0q, etc., due to formulating equations of



C. Development From Flight Data

The linear point models and trim data that go into a stitched model can come from several di�erent sources,
including trimming and linearizing high-�delity nonlinear simulation models that cannot be run in real-
time2, 9 or from ight data. One requirement for the linear point models and trim data is that they vary
only with the scheduling parameter vector ���, meaning that variations due to other sources (e.g., loading
con�guration) should be minimized. This is easy to enforce when developing a stitched model from a
nonlinear simulation model, for example. However, when developing a stitched model from ight data,
it can be impracticable or even impossible to identify all models and collect all trim data at the same
loading con�guration. Therefore, when developing a stitched model from ight data, care must be taken
in designing the ight test, and a pre-processing step is taken which uses the stitched model's capability
to scale for changes in weight, CG, and inertia, to \baseline" all identi�ed models to a common loading
con�guration. The following sections will summarize the work ow of creating a stitched model from ight
data.

1. Design the Flight Test

The �rst step in developing a stitched model from ight data is to determine what maneuvers to y and
at what ight conditions. For the recommended frequency-domain identi�cation approach 3 used herein, the
primary set of ight data collected are frequency sweeps in each of the control axes at each of the identi�cation
ight conditions. Note that where sweeps are not practical (e.g., for identifying the thrust response) pulses,
doublets, 3-2-1-1, or other maneuvers may be used. Equally important to the frequency sweep data are the
longitudinal speed stability (LSS) data10 that should be collected around each identi�cation ight condition.
These LSS data will have two important uses described later on. Next, steady-heading sideslip data10 should
be collected at each identi�cation ight condition. Validation data in the form of pulses, doublets, or steps in



is the preferred method and the one used herein. This is a two step approach in which �rst, frequency
responses are extracted from the frequency sweep time history ight data. Then, state-space models are �t
to the frequency responses and veri�ed in the time domain. These state-space models are the point models
(sometimes referred to as \point ID models" when identi�ed from ight data) used to build up the stability
and control derivative lookup tables in the stitched model. An example identi�cation of the longitudinal



A. Aircraft Description

The aircraft used in this study is the Calspan Variable Stability System (VSS) Learjet LJ-25D, shown in
Figure 2. It is a twin turbojet-powered business jet which in its unmodi�ed state can carry eight passengers.
It has a maximum take-o� weight (MTOW) of 15,000 lbs, a cruise speed of 464 KTAS, a maximum range
of 1,535 nm, and a service ceiling of 45,000 ft.

The aircraft is instrumented with sensors to measure air data (� , � , Vtot , �q, _h, and outside air tem-
perature), aircraft states (�, � ,  , p, q, r , nx , ny , and nz ), controls (pilot stick and pedal force Flat,lon,ped

and positions � lat,lon,ped , surface deections � a,e,r , engine fuel control, and derived engine thrust� T ), GPS
measurements, and INS (H-423 Ring Laser Gyro).

Figure 2. Calspan Variable Stability System Learjet LJ-25D.

B. Test Points

Table 1 lists the ight condition and maneuvers own at each test point. The test points are plotted against
the LJ-25 ight envelope in Figure 3. Note that the points cover only a small portion of the envelope, but
produce su�cient data to develop a full-envelope stitched model of this aircraft. For this test, the majority
of the data were collected at 15,000 ft. This is a relatively low altitude compared to the ight envelope
(Figure 3), however, was selected because is it the primary altitude at which the USAF TPS operates the
Learjet.

Model identi�cation data consisted of piloted frequency sweeps in the longitudinal, lateral, and direc-
tional axes, thrust doublets, longitudinal speed stability data, and steady heading sideslip data own at �ve
conditions for model development (Points 1 through 5, Table1) and two conditions for model validation
(Points 7 and 8, Table 1). Piloted frequency sweeps were used in favor of automated frequency sweeps
because of their richer frequency content and improved ability to keep the aircraft on trim condition.

Trim data were collected at airspeeds spanning the identi�cation points (185{300 kts) at increments of
approximately 20 kts in one trim shot maneuver (Point 6, Table 1). Additional validation data consisting of
piloted doublets in the longitudinal, lateral, and directional axes were collected at Points 9 and 10, Table1.

Note that Points 1 and 2 (Table 1, Figure 3) were repeated at the same ight condition (185 kts, 15,000 ft),
but Point 1 is a powered approach con�guration (gear down, aps 20), while Point 2 is a clean con�guration.



Table 1. Test Matrix of Flight Conditions and Maneuvers Flown

Speed Altitude Gear/ Trim Piloted Speed Steady
Point [KIAS] [ft] Flaps Shot Sweepsa Doubletsb Stability Sideslips

Model Development Data
1 185 15000 DN/20 - X X X X
2 185 15000 UP/UP - X X X X
3 220 15000 UP/UP - X X X X
4 250 15000 UP/UP - X X X X
5 300 15000 UP/UP - X X X X
6 185{300 15000 UP/UP X - - - -

Model Validation Data
7 250 15000 UP/UP - X X X X
8 275 15000 UP/UP - X X X X
9 140 10000 DN/20 - - X - -
10 135 6000 DN/20 - - X - -

a Frequency sweeps in pitch, roll, and yaw
b Doublets in pitch, roll, yaw, and throttle

Mach

A
lt

it
ud

e
[ft

]

1, 2 3 4, 7 5

Figure 3. Learjet-25 ight envelope with ight test points.

IV. Point Model Identi�cation

Longitudinal and lateral/directional state-space models were identi�ed at seven of the test points|Points
1, 2, 3, 4, 5, 7, and 8 (Table1, Figure 3). As mentioned in Section III.B, �ve of these models were used
to develop the stitched model, while the remaining two were only used for validation. Frequency domain
identi�cation was done in two steps using the CIFER R software tool.3 First, frequency responses of the
aircraft outputs were extracted from the frequency sweep ight data. Next, state-space models were �t to
the frequency response data. The following sections will provide the forms of the state-space models used,





(!



Figure 7. Longitudinal acceleration frequency re-
sponse (250 kts, 15,000 ft, light weight con�gura-
tion).

M
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tu

de
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B
]

Figure 8. Vertical acceleration frequency response
(250 kts, 15,000 ft, light weight con�guration).

Figure 9. Derivative of x-axis body velocity fre-
quency response (250 kts, 15,000 ft, light weight
con�guration).

Figure 10. Derivative of z-axis body velocity fre-
quency response (250 kts, 15,000 ft, light weight
con�guration).

3. Longitudinal Speed Stability Data

In addition to the frequency sweep data gathered for model identi�cation and doublet data gathered for model
validation, longitudinal speed stability (LSS) data were gathered using the stabilized point technique.12 The
aircraft was trimmed around the identi�cation point ight condition (250 kts, 15,000 ft in this case), throttle
position was held constant, and airspeed was varied by climbing and descending. Airspeed was stabilized at
three points above and three points below the trim condition (approximately 10 kts apart).

Figure 11 shows the full maneuver time history. Highlighted in red on the time history data are sections
where the airspeed was stabilized, and the aircraft was in trim. Trim pitch attitude � , z-body axis velocity
W = Vtot sin � , elevator deection � e, and estimated thrust � T were averaged over each of the highlight
sections and then plotted against x-body axis velocityU = Vtot cos� to determine the trim gradients (as
shown in Figure 12). These trim gradients were used to determine and �x theu-stability derivatives (i.e.,
X u , Zu , and M u ) in the state-space model identi�cation. This is done by recognizing that in trim _u = 0.
Then, the state-space equations can be used to solve for theu-stability derivatives as a function of the other
derivatives and the trim gradients, as is shown here for theX u derivative:3
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� _u = X u �u + X w �w + (X q � W0)�q � gcos � 0�� + X � e �� e (25)

X u = �X w
�w
�u

+ gcos � 0
��
�u

� X � e

�� e

�u
(26)

Note that the X � T �� T term is eliminated from Equation 25, because the LSS data is taken at constant
throttle, and therefore �� T is assumed to be 0 (which is seen to nearly be the case in the bottom plot in
Figure 11).

For the data presented in Figure 12, X u is calculated to be (Equation 26):

X u = �(0:0857)(�0:0934) + (32:146)(�0:000483) � (0:0727)(0:0127)

= 0:0080 � 0:0155� 0:000923

= �0:0084 (27)

with the main contributions coming from the ( gcos � 0)(��=�u) and (X w )(�w=�u ) terms.
This process of determining and �xing the u-stability derivatives is an iterative one, as it requires knowing

the values of the other derivatives �rst. That, in turn, requires identifying the state-space model before
�xing the u-stability derivatives. Once the u-stability derivatives are �xed, the remaining derivatives are
re-identi�ed. Experience indicates that the values change very little, due to the frequency separation between
the phugoid and short-period modes, and that additional iterations of this process are not needed.

As described in SectionII.C .2 and Ref. 3, this method of �xing the u-stability derivatives is preferred
to freeing them in the state-space identi�cation process since there is typically no frequency responses data
at frequencies low enough to capture the phugoid dynamics. Therefore, freeing theu-stability derivatives
would result in large insensitivity values for those derivatives. This also ensures that the speed derivatives
will be consistent with the stitched model implementation. For example, X u from Equation 26 and X u qLPV

from Equation 12 will be equal if the trim and control gradients used to determine X u are the same as those
used in the stitched model. This will be shown in SectionVI.

Figure 11. Longitudinal speed stability maneuver
time history (250 kts, 15,000 ft, light weight con-
�guration).

3
[r

ad
]

LSS Data

0

0:05

0:1

 

 

Data Points -0.0005 rad/ft/sec

Figure 12. Trim gradients extracted from longitudi-
nal speed stability maneuver time history (250 kts,
15,000 ft, light weight con�guration).
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4. State-Space Model Identi�cation

The state-space model form given in Equation 20was �t to the frequency responses shown in Figures5
through 10 using the DERIVID tool in CIFER R .3 The identi�cation results are shown in Figures 13
through 18. The individual and average �t cost values are given in Table2. The costs are calculated as a
weighted sum of the magnitude and phase errors between the frequency responses and the model responses.3

The �gures show an excellent model �t, which is con�rmed by the low individual and average �t costs given
in Table 2 (costs of J < 50 indicate near perfect agreement3).

The identi�ed parameter values as well as their insensitivity and Cram�er-Rao bounds are given in Table3.
All identi�ed parameters are known to good accuracyand not correlated with any other parameters as
indicated by their low insensitivity ( I � 10%3) and Cram�er-Rao bound (CR � 20%3) values.

M
ag

ni
tu

de
[d

B
]

q=/ e [rad/sec/deg]

 

 

! 60

! 50

! 40

! 30

! 20

Flight Data

Figure 13. Pitch rate model �t (250 kts, 15,000 ft,
light weight con�guration).

Figure 14. Angle of attack model �t (250 kts, 15,000
ft, light weight con�guration).
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]

Figure 15. Longitudinal acceleration model �t (250
kts, 15,000 ft, light weight con�guration).

Figure 16. Vertical acceleration model �t (250 kts,
15,000 ft, light weight con�guration).
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Figure 17. Derivative of x-axis body velocity model
�t (250 kts, 15,000 ft, light weight con�guration).
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Figure 18. Derivative of z-axis body velocity model
�t (250 kts, 15,000 ft, light weight con�guration).

Table 2. State-Space
Model Identi�cation Fit
Costs (250 kts, 15,000
ft, light weight con�gu-
ration)

Response Cost (J)
�=� e 1.327
q=�e 5.145
ax =�e 9.048
az=�e 1.492
_u=� e 25.11
_w=�e 14.07

Jave 9.366

Table 3. State-Space Model Identi�cation Pa-



The model captures the dynamics of the Learjet very well, which is shown by the excellent agreement of the
ight and model data in the �gures, as well as by the low RMS �t error cost (J RMS = 0:47 for the maneuver
shown). Values ofJRMS � 1:0 reect a good level of accuracy.3

/

e

[

d

e

g

]

!

2

02

Figure 19. Time domain veri�cation results (250 kts, 15,000 ft, light weight con�guration).

Once the process laid out in Sections IV.B.1 to IV.B.5was completed for the other ight conditions, Step
2 in Section II.C was completed.

V. Model Scaling

After individual point models at each ight condition were identi�ed, the next step was to scale or
\baseline" the models to a common loading con�guration (Section II.C.3). Recall that this is a necessary
step since the stitched model requires all models to be at the same loading con�guration. This scaling
technique is demonstrated here for the 250 kts ight condition, at which identi�cation was done at two
loading con�gurations, described in Table 4.

First, example identi�cation results will be given for the two loading con�gurations at the 250 kts, 15,000
ft ight condition:

Con�guration 1: Point 4, 250 kts, 15,000 ft, empty tip tanks, light weight, forward X cg

Con�guration 2: Point 7, 250 kts, 15,000 ft, full tip tanks, heavy weight, aft X cg

Then, the identi�cation results will be used to determine the moments of inertia of the two con�gurations,
which are needed to scale the stitched model. Finally, using the stitched model's scaling capability, the
Con�guration 1 model will be scaled to the loading con�guration of Con�guration 2 and the results will be
compared against the Con�guration 2 ight identi�ed model.
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Table 4. Loading Con�gurations (250 kts, 15,000 ft)

Con�guration 1 Con�guration 2
Light/Fwd Heavy/Aft

Tip Tank Fuel [lbs] 0 1919.4
Total Fuel [lbs] 2328.6 4580.3
Total Weight [lbs] 12,026.6 14,281.3
X cg

a



Figure 22. Roll rate response to aileron input com-



Table 6. Longitudinal S&C Deriva-
tives Comparison (250 kts, 15,000 ft)

Param. Con�g. 1 Con�g. 2
A-matrix

X u {0.009725 {0.009896
X w 0.08642 0.08382
X q 0 0
Zu {0.1119 {0.08969
Zw {1.432 {1.142
Zq 0 0
M u 0.0004093 0.0008353
M w {0.02352 {0.01783
M q {1.65 {1.554

B-matrix
X � e 0.07084 0.07811
X � T 0.002289 0.001944
Z � e {1.244 {0.9845
Z � T {0.001053 {0.0009109
M � e {0.1919 {0.1856
M � T {3.826e{05 {3.444e{05

Table 7. Lateral/Directional S&C
Derivatives Comparison (250 kts,
15,000 ft)

Param. Con�g. 1 Con�g. 2
A-matrix

Yv {0.1698 {0.1454
Yp 0.8673 0.527
Yr 0 0
L v {0.01918 {0.009209
L p {2.278 {1.035
L r 0.8487 0.7406
Nv 0.005268 0.004034
Np {0.2258 {0.1004
N r {0.2719 {0.1859

B-matrix
Y� a {0.0132 {0.02062
Y� r 0.3073 0.2368
L � a {0.1623 {0.07185
L � r 0.03301 0.0173
N � a {0.01127 {0.003775
N � r {0.03732 {0.02688

B. Moments of Inertia Determination

Moment of inertia estimates were determined from the models of the two con�gurations. If we assume a
constant pitch moment of inertia I yy between the two con�gurations (as suggested by the similar magnitudes
of the high-frequency asymptotes of the pitch rate frequency responses in Figure 20), we can use the ratio
of the M w stability derivative (Table 6) and X cg (Table 4) di�erence between the two con�gurations to
calculate an averageI yy .3 Recognizing that:13

M w =
�SUc
2I yy

CM � (28)

and:

CM � = CL �

�
X cg � X np

c

�
(29)

the location of the neutral point X np can be determined by solving:

M w2

M w1

= 0:758 =
X cg2

� X np

X cg1
� X np

(30)

The neutral point is calculated to be X np = 2:53 ft (or �X np = 35:9% MAC). The remaining value needed in
order to determine I yy is CL � , which can be calculated based on:13

CL � =
�Z w

�SU=2m
� CD (31)

Ignoring the contribution of CD to CL � , an averageCL � = 5:64 is calculated based on the averageZw value
(Table 6). Finally,
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I yy ave =
�SUc
2Mw1

CL �

�
X cg1

� X np

c

�
=

�SUc
2Mw2

CL �

�
X cg2

� X np

c

�

= 27; 520 slug-ft2 (32)

In the case of the roll and yaw moments of inertia (I xx and I zz , respectively), we can use the ratio of
control derivatives (L � a and N � r , Table 7), as well as the fact that the most signi�cant factor contributing
to the change in moments of inertia is the change in tip tank fuel mass, to determine the inertia values.
Recognizing that:

L � a =
�SU 2b
2I xx

Cl � a
(33)

N � r =
�SU 2b
2I zz

Cn � r
(34)

we can use the ratio of the control derivatives to calculate the ratio of the moments of inertia between
Con�guration 1 and Con�guration 2:

L � a1

L � a2

=
I xx 2

I xx 1

= 2:26 (35)

N � r 1

N � r 2

=
I zz2

I zz1

= 1:39 (36)

Note that several simplifying assumptions have been made here:

1. Assuming I xz � I xx ; I zz allows us to ignore that the identi�ed derivatives (e.g., L � a ) are actually
primed derivatives:13

L 0
� a

=a
== Irrrrrr



Combining Equations 35 and 38 and Equations 36 and 39, we can solve for the roll and yaw moments
of inertia of both con�gurations. The product of inertia I xz was determined through trial and error of the
model scaling process by comparing o�-axis frequency responses (e.g.,�=� a, p=�r ) where its e�ects were
most noticeable. The values of the moments of inertia for the two con�gurations are provided in Table8.
Note that the actual values of I yy for the two con�gurations were slightly modi�ed based on the model
scaling process, though the average of theI yy values in Table 8 matches very closely to that calculated in
Equation 32.

Table 8. Calculated Moments of Inertia Based
on Identi�ed Derivatives

Moment of Con�g. 1 Con�g. 2
Inertia [slug-ft 2] Light/Fwd Heavy/Aft
I xx 11,985 26,446
I yy 26,765 27,932
I zz 41,395 56,302
I xz 1949.8 1341.8

C. Baselining Results

To test the ability of the stitched model to scale one loading con�guration to another, the stitched model was
populated with the 250 kts light-weight/forward-CG model (Con�guration 1) and associated longitudinal
speed stability trim data. The stitched model was then scaled to the 250 kts heavy-weight/aft-CG con�g-
uration (Con�guration 2), by setting msim and I sim in Figure 1 to the heavy-weight/aft-CG con�guration
values.

Figures24 through 27 show comparisons of the primary on-axis frequency responses of the ight identi�ed
250 kts heavy-weight/aft-CG model and the results of the scaled stitched model. In addition, Table9 shows a
comparison of the trim data from ight and from the scaled stitched model for the 250 kts heavy-weight/aft-
CG con�guration. An excellent agreement is seen in both the frequency responses (dynamic response) and
trim data between the ight data and scaled stitched model. This gives con�dence in the stitched model's
ability to scale one loading con�guration to another, which was subsequently used to scale all ight identi�ed
models to a single, common loading con�guration.

Figure 24. Pitch rate response to elevator input
comparison between ight identi�ed model and
scaled stitched model (250 kts, 15,000 ft, heavy
loading con�guration).

Figure 25. Roll rate response to aileron input com-
parison between ight identi�ed model and scaled
stitched model (250 kts, 15,000 ft, heavy loading
con�guration).
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Figure 26. Roll rate response to aileron input com-
parison between ight identi�ed model and scaled
stitched model (250 kts, 15,000 ft, heavy loading
con�guration).

Figure 27. Sideslip response to rudder input com-
parison between ight identi�ed model and scaled
stitched model (250 kts, 15,000 ft, heavy loading
con�guration).

Table 9. Trim Comparison (250 kts,
15,000 ft, heavy loading con�guration)

Flight ID Stitched Model
� 0 [deg] 2.883 2.787
� 0 [deg] 2.883 2.787
� e0 [deg] �3.968 -3.779
� s0 [deg] 0 0
� T 0 [lbs] 14,559 14,376

VI. Repurposing Longitudinal Speed Stability Data

Recall from SectionII.A that it is important to have a �ne grid of trim data about each individual point
model to accurately capture the e�ects of the speed stability derivatives. Therefore, in addition to scaling
each identi�ed point model to a common loading con�guration, the stitched model was also trimmed at
airspeeds of�20, �
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Figure 29. Longitudinal axis stability and control derivatives as a function of airspeed (15,000 ft).

 

 

Baselined Point ID Models
Stitched Model Data

Figure 30. Lateral/directional axis stability and control derivatives as a function of airspeed (15,000
ft).
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B. Trim Data

Once the LSS data set around each point model was repurposed into a constant altitude, varying thrust trim
shot data set, and baselined to the stitched model loading con�guration (SectionVI), the four trim shot
data sets were combined. Then, least squares �ts were made to each trim parameter based on its expected
variations with airspeed, in order to both be able to generate a �ner grid of trim data and to be able to



3 0
[d

eg
]

Trim Data

0

5

10

,0

 

 

Figure 32. Trim data as a function of airspeed (15,000 ft).

C. E�ects of Flaps

The stitched model data presented thus far in SectionsVII.A and VII.B was for aps up (� f = 0). Recall
from Equation 15, that the Learjet stitched model is stitched with x-body axis velocity U and scheduled with
ap deection � f . The stitched model requires a rectangular grid of data (i.e., there must be a corresponding
aps down model at each aps up model U, even if some of these models are outside the aps down ight
envelope).

To populate the stitched model lookup tables with additional data for the aps down con�guration, the
point model and LSS data for Point 1 (Table 1, Figure 3) were used. Scale factors were determined between
the Point 1 and Point 2 identi�ed point models (both at 185 kts, 15,000 ft but varying ap deections).
In addition, trim values and trim gradient scale factors were also determined. These stability and control
derivatives, trim, and trim gradient scale factors were then used to generate� f = 20 data from the � f = 0
models and trim data to populate the stitched model.

VIII. Validation of Final Stitched Model

This section covers both time- and frequency-domain validation of the �nal stitched model using ight
data that were not used for identi�cation. The validation was done at several di�erent ight conditions,
some matching the ight conditions of the point models in the stitched model and some not. Furthermore,
the validation ight data were in general recorded at loading (fuel, weight, CG) conditions di�erent than
the stitched model. Therefore, the results presented in this section will validate the ability of the stitched
model to trim at and simulate conditions that require interpolation and extrapolation.

A combination of pilot stick inputs and Programmed Test Inputs (PTI) were used for the time-domain
validation. The direct pilot stick to aircraft aerosurfaces connection was included in the stitched model to
be able to use the recorded pilot inputs and PTIs from ight to simulate the model.

A. Doublets

Validation doublets were implemented through Programmed Test Inputs (PTI) in the VSS. To generate the
stitched model results, the model was �rst trimmed at the same ight condition and loading con�guration
as the ight data. Then, the recorded PTI and pilot inputs (i.e., stick, pedals, and throttles) were used as
the inputs to simulate the stitched model.
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Figure 33 shows a pitch axis doublet response at the 250 kts, 15,000 ft ight condition. The �rst subplot
shows the input force on the longitudinal stick Flon from the PTI. The second subplot shows the resulting
elevator deection � e from ight data and from the stitched model. The trim elevator deection value (�rst 5
sec of the plot) matches ight data, meaning the stitched model trim data is accurate. The elevator deection
during the doublet matches ight data as well, which validates the stick to elevator gain implemented in
the model. The remaining subplots show the primary longitudinal aircraft responses (q, � , nz , and � )
as measured from ight and from the stitched model. Again, the �rst 5 sec of the responses match well,
demonstrating that the stitched model trimmed at the right aircraft states. Furthermore, the stitched model
dynamic responses all match ight data very well, as indicated by the low RMS �t error cost3 JRMS = 0:22
for the maneuver shown. From the small negative initial pitch rate q, sloping down initial pitch attitude � ,
and initial normal acceleration nz greater than �1 g, it can be seen that the aircraft was slightly out of trim
in ight. This did not negatively impact the validation.

Figure 33. Pitch doublet response (250 kts, 15,000 ft).

Figure 34 shows a roll axis doublet response at the 250 kts, 15,000 ft ight condition. The �rst subplot
shows the input force on the lateral stick Flat . The second subplot shows the resulting aileron deection
� a from ight data and from the stitched model. The excellent match in aileron deection validates the
stick gain implemented in the stitched model. The remaining subplots show the primary lateral/directional
aircraft responses (p,r , ny , and � ) as measured from ight and from the stitched model. As with the
pitch doublet response, there is an excellent match between the stitched model and the ight data, with
JRMS = 0:53, demonstrating the stitched mode